第五篇:强化学习基础之马尔科夫决策过程
你好,我是zhenguo(郭震)
今天总结强化学习第五篇:马尔科夫决策过程
基础
马尔科夫决策过程(MDP)是强化学习的基础之一。下面统一称为:MDP
MDP提供了描述序贯决策问题的数学框架。
它将决策问题建模为:
状态、动作、转移概率和奖励的组合,并通过优化累积奖励的目标来找到最优的决策策略。
详细来说,MDP包含以下要素:
状态(State):系统或环境可能处于的不同状态。
动作(Action):在每个状态下可选的决策或行动。
转移概率(Transition Probability):在执行某个动作后,系统从一个状态转移到另一个状态的概率分布。
奖励(Reward):在每个状态执行某个动作后获得的即时奖励。
策略(Policy):根据当前状态选择动作的策略。
再看迷宫游戏
之前文章,我已经拿着迷宫例子详细阐述过一遍上面的这些概念。
"迷宫问题"是MDP的经典案例。下面我们拿着此案例,再深入理解下这些基础概念。
假设我们有一个迷宫,智能体要在迷宫中找到一个宝藏。

迷宫可以表示为一个二维网格,每个格子可以是墙壁(不可通过)或空地(可通过)。智能体可以采取四个动作:向上、向下、向左和向右移动。目标是找到宝藏,同时避免碰到墙壁。
现在,逐一解释下MDP的这些要素。
状态(State)
在这个例子中,状态是智能体所处的位置坐标,即迷宫中的某个格子。
例如,可以使用(x, y)坐标来表示状态,其中x和y是迷宫中某个格子的行和列索引。
动作(Action)
动作是智能体在某个状态下可以采取的行动,即向上、向下、向左或向右移动。
可以使用符号(U,D,L,R)来表示相应的动作。
转移概率(Transition Probability)
转移概率描述在某个状态下执行某个动作后,智能体转移到下一个状态的概率分布。
在迷宫游戏中,转移概率是确定性的,因为智能体在执行一个动作后会准确地移动到下一个状态。
例如,如果智能体在状态(x, y)执行向上的动作,那么下一个状态将是(x, y-1),转移概率为1。
奖励(Reward)
奖励是智能体在执行某个动作后所获得的即时反馈。
在迷宫游戏中,可以设置以下奖励机制:
当智能体移动到宝藏位置时,获得正奖励(例如+10)。
当智能体移动到墙壁位置时,获得负奖励(例如-5)。
在其他情况下,获得较小的负奖励(例如-1),以鼓励尽快找到宝藏。
公式化表达
下面,我们尝试将这个例子使用公式化表达。
状态(State)
状态可以表示为一个二维坐标 (x, y),其中 x 表示迷宫的行索引,y 表示迷宫的列索引。
假设迷宫的大小为 N × M,则状态集合为
动作(Action)
动作集合为 ,分别代表向上、向下、向左和向右移动。
转移概率(Transition Probability)
由于在迷宫中移动是确定性的,转移概率可以表示为函数
其中 表示在状态 s 下执行动作 a 后转移到状态 s' 的概率。
根据迷宫规则,如果智能体在状态 执行动作 a,那么下一个状态 s' 可以根据动作 a 来计算,例如:
如果 ,则
如果 ,则
如果 ,则
如果 ,则
注意,在边界情况下,如果智能体试图移动到迷宫之外的位置或者移动到墙壁位置,转移概率为0。
奖励(Reward)
奖励函数可以表示为函数 ,其中 表示在状态 s 下执行动作 a 后转移到状态 `s'`` 的即时奖励。
根据迷宫的设定,定义如下奖励:
如果 是宝藏位置,则
如果 是墙壁位置,则
否则,
这篇文章我想重点阐述清楚MDP的这些核心要素,它们是强化学习的根基,这些你一定要理解。
下一篇介绍:MDP的决策方法
你的点赞和转发,给我更新增加更大动力,感谢你的支持。
相关文章:
第五篇:强化学习基础之马尔科夫决策过程
你好,我是zhenguo(郭震) 今天总结强化学习第五篇:马尔科夫决策过程 基础 马尔科夫决策过程(MDP)是强化学习的基础之一。下面统一称为:MDP MDP提供了描述序贯决策问题的数学框架。 它将决策问题建模为: 状态…...
Oracle面试题
1. 什么是存储过程,使用存储过程的好处? 存储过程(Stored Procedure )是一组为了完成特定功能的SQL 语句集,经编译后存储在数据库中。用户通过指定存储过程的名字并给出参数(如果该存储过程带有参数&#…...
用Vue写教务系统学生管理
文章目录 一.首先创建新的Demo二.在APP里面绑定DemoStudent三.源码附上四.效果图(新增记录还未实现) 一.首先创建新的Demo 二.在APP里面绑定DemoStudent <template><img alt"Vue logo" src"./assets/logo.png"><!--…...
专门用于管理企业与自己客户之间所有信息的客户管理系统
一、开源项目简介 关于 NXCRM NXCRM 是一套基于 Laravel 的 CRM 应用程序。它包含了一个管理中心,可以管理用户、客户、产品、订单、商机,合同,收款,附件,联系人,跟进动态,发票,业…...
(转载)基于多层编码遗传算法的车间调度算法(matlab实现)
以下内容大部分来源于《MATLAB智能算法30个案例分析》,仅为学习交流所用。 1 理论基础 遗传算法具有较强的问题求解能力,能够解决非线性优化问题。遗传算法中的每个染色体表示问题中的一个潜在最优解,对于简单的问题来说,染色体…...
Redis的常用数据结构之哈希类型
首先这里说的哈希类型针对的是redis中的value的k-v结构 常见的操作命令 hset设置值 hsetnx命令,不存在可以设置,存在设置不成功 hget取值,这里与字符串类型不同是要精确到filed。前面的判断也是基于field来实现的 要是field没有就返回null h…...
计算机组成原理-存储系统-缓存存储器(Cache)
目录 一、Cache基本概念 1.2性能分析 二、 Cache和主存的映射发生 2.1全相连映射编辑 2.2直接映射编辑 2.3组相连映射 三、Cachae的替换算法 3.1 随机算法(RADN) 3.2 先进先出算法(FIFO) 3.3 近期最少使用(LRU) 3.4 最近不经常使用(LFU) 四、写策略 4…...
打开c语言生成exe文件,出现闪退的解决方法
为什么打开c语言生成的exe文件,立马闪退。 起初个别问的时候,我只是简单的说明程序运行完了,就自动关了, 首先,生成的exe文件本质是控制台程序,这些都是依赖于windows的控制台窗口,程序执行完…...
算法基础学习笔记——⑩DFS与BFS\树与图
✨博主:命运之光 ✨专栏:算法基础学习 目录 DFS与BFS\树与图 ✨DFS ✨BFS 🍓宽搜流程图如下: 🍓宽搜流程: 🍓广搜模板 ✨树与图 🍓树是特殊的图(连通无环的图&am…...
chatgpt赋能python:Python中可迭代对象的介绍
Python中可迭代对象的介绍 Python是一种高级编程语言,它具有简单易学、可读性强、功能强大等特点,成为了数据科学、机器学习、Web开发等领域的热门选择。Python中有很多重要的概念和功能,其中之一就是支持可迭代对象的概念。 在Python中&am…...
报表控件FastReport使用指南——如何打开WebP格式的图片
FastReport 是功能齐全的报表控件,可以帮助开发者可以快速并高效地为.NET,VCL,COM,ActiveX应用程序添加报表支持,由于其独特的编程原则,现在已经成为了Delphi平台最优秀的报表控件,支持将编程开…...
【鲁棒、状态估计】用于电力系统动态状态估计的鲁棒迭代扩展卡尔曼滤波器研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
整理6个超好用的在线编辑器!
随着 Web 开发对图像可扩展性、响应性、交互性和可编程性的需求增加,SVG 图形成为最适合 Web 开发的图像格式之一。它因文件小、可压缩性强并且无论如何放大或缩小,图像都不会失真而受到欢迎。然而,为了编辑 SVG 图像,需要使用 SV…...
ArcGIS10.8下载及安装教程(附安装步骤)
谷歌云: https://drive.google.com/drive/folders/10igu7ZSMaR0v0WD7-2W-7ADJGMUFc2ze?uspsharing ArcGIS10.8 百度网盘: https://pan.baidu.com/s/1s5bL3QsCP5sgcftCPxc88w 提取码:kw4j 阿里云: https://www.aliyundriv…...
AI智能照片编辑:AI Photo for Mac
AI Photo是一款Mac平台上的智能照片编辑软件,它基于人工智能技术,可以帮助用户快速、轻松地对照片进行编辑和美化。AI Photo提供了多种智能修复和美化功能,包括自动调整色彩、对比度、亮度、清晰度等,使得照片的质量得到有效提升。…...
Tuxera for Mac2023中文版读写硬盘U盘工具
在日常生活中,我们使用Mac时经常会遇到外部设备不能正常使用的情况,如:U盘、硬盘、软盘等等一系列存储设备,而这些设备的格式大多为NTFS,Mac系统对NTFS格式分区存在一定的兼容性问题,不能正常读写。 那么什…...
项目遇到的实际需求: java从信任所有证书到对server证书进行校验
最近项目上开发了一个rest api,放在了一台linux服务器上,并且启用了https连接;在另一台服务器上写了一个功能需要去调用linux机器上的api。 项目里面自己封装了一个HttpsClient的类,用来发送https请求,并且在里面重写了…...
使用JS来实现轮播图的效果
最好今天分享一个使用JS制作的轮播图效果 个人名片: 😊作者简介:一名大一在校生,web前端开发专业 🤡 个人主页:几何小超 🐼座右铭:懒惰受到的惩罚不仅仅是自己的失败,…...
Springboot +spring security,自定义认证和授权异常处理器
一.简介 在Spring Security中异常分为两种: AuthenticationException 认证异常AccessDeniedException 权限异常 我们先给大家演示下如何自定义异常处理器,然后再结合源码帮助大家进行分析 二.创建项目 如何创建一个SpringSecurity项目,前…...
Dockerfile(1) - FROM 指令详解
FROM 指明当前的镜像基于哪个镜像构建dockerfile 必须以 FROM 开头,除了 ARG 命令可以在 FROM 前面 FROM [--platform<platform>] <image> [AS <name>]FROM [--platform<platform>] <image>[:<tag>] [AS <name>]FROM […...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
