lintcode-图的拓扑排序(java)
拓扑排序
- 拓扑排序-lintcode原题
- 题目介绍
- 解题思路
- 代码演示
- 解题方法二 (参考,不用掌握)
- 前置知识 图的拓扑序和深度优先遍历和广度优先遍历
拓扑排序-lintcode原题
127.拓扑排序-原题链接,可以点进去测试
题目介绍
描述
给定一个有向图,图节点的拓扑排序定义如下:
对于图中的每一条有向边 A -> B , 在拓扑排序中A一定在B之前.
拓扑排序中的第一个节点可以是图中的任何一个没有其他节点指向它的节点.
针对给定的有向图找到任意一种拓扑排序的顺序.
样例:
输入:
graph = {0,1,2,3#1,4#2,4,5#3,4,5#4#5}
输出:
[0, 1, 2, 3, 4, 5]
解释:
拓扑排序可以为:
[0, 1, 2, 3, 4, 5]
[0, 2, 3, 1, 5, 4]
…
您只需要返回给定图的任何一种拓扑顺序。
解题思路
我们用图的深度优先遍历去解决这个题.
由于拓扑序不唯一,但我们可以定一个标准,深度越深的节点,拓扑序越靠前.
我们用深度优先遍历,把图节点的深度都拿到,保存在一个表中,
我们再根据深度去排序,就得到递归序了,我们上代码演示.
代码演示
1.lintcode 提供的图结构
public static class DirectedGraphNode {public int label;public ArrayList<DirectedGraphNode> neighbors;public DirectedGraphNode(int x) {label = x;neighbors = new ArrayList<DirectedGraphNode>();}}
- 下面代码可以直接复制进去测试
/*** 拓扑序* @param graph* @return*/public static ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph) {HashMap<DirectedGraphNode, Record> order = new HashMap<>();//拿到每个点的深度for (DirectedGraphNode node : graph){process(node,order);}//排序好的节点放进集合中 方便排序ArrayList<Record> records = new ArrayList<>();for (Record record : order.values()){records.add(record);}//使用自定义比较器去排序records.sort(new MyComparator());ArrayList<DirectedGraphNode> ans = new ArrayList<>();for (Record re : records){ans.add(re.node);}return ans;}/*** 记录每个几点的最大深度*/public static class Record{//节点DirectedGraphNode node;//深度int deep;public Record(DirectedGraphNode node, int deep) {this.node = node;this.deep = deep;}}/*** 自定义比较器,深度越深的,就排在前面.*/public static class MyComparator implements Comparator<Record>{@Overridepublic int compare(Record o1, Record o2) {return o2.deep - o1.deep;}}/*** 递归去记录每个节点的最大深度* @param node* @return*/public static Record process(DirectedGraphNode node, HashMap<DirectedGraphNode,Record>orders){//记忆化搜索,记录每次的结果,如果已经有了就直接拿结果返回.if (orders.containsKey(node)){return orders.get(node);}int deep = 0;//拿到节点最大深度for (DirectedGraphNode cur : node.neighbors){deep = Math.max(deep,process(cur,orders).deep);}Record record = new Record(node, deep + 1);orders.put(node,record);return record;}
解题方法二 (参考,不用掌握)
思路:
和方法一类似,在递归的过程中,我们不计算最大深度了,我们拿到每个点下面出现了多少次别的点.
出现点次越多的,我们认为拓扑序越靠前.
举例:
如果a点后面还有五个点,b 后面有四个点,我们认为a 的拓扑序更靠前/
直接代码展示,可以提交测试.
/*** 排序.* @param graph* @return*/public static ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph){HashMap<DirectedGraphNode, Record> map = new HashMap<>();for (DirectedGraphNode node : graph){process(node, map);}ArrayList<Record> records = new ArrayList<>();for (Record re : map.values()){records.add(re);}records.sort(new MyComparator());ArrayList<DirectedGraphNode> directedGraphNodes = new ArrayList<>();for (Record record : records){directedGraphNodes.add(record.node);}return directedGraphNodes;}/*** 记录每个点在深度遍历时 后面点出现的点次的概念*/public static class Record{public DirectedGraphNode node;public long nodes;public Record(DirectedGraphNode node, long nodes) {this.node = node;this.nodes = nodes;}}public static class MyComparator implements Comparator<Record>{@Overridepublic int compare(Record o1, Record o2) {return o1.nodes == o2.nodes ? 0 : (o1.nodes > o2.nodes ? -1 : 1);}}/*** 递归算法 计算每个点出现的点次* @param node* @param records* @return*/public static Record process(DirectedGraphNode node, HashMap<DirectedGraphNode,Record> records){if (records.containsKey(node)){return records.get(node);}long nodes = 0;for (DirectedGraphNode cur : node.neighbors){nodes += process(cur,records).nodes;}Record record = new Record(node, nodes + 1);records.put(node,record);return record;}
前置知识 图的拓扑序和深度优先遍历和广度优先遍历
图的拓扑排序(java)
图的深度优先遍历和广度优先遍历(java)
图结构-图的数据表示法(java)
相关文章:
lintcode-图的拓扑排序(java)
拓扑排序 拓扑排序-lintcode原题题目介绍解题思路代码演示解题方法二 (参考,不用掌握)前置知识 图的拓扑序和深度优先遍历和广度优先遍历 拓扑排序-lintcode原题 127.拓扑排序-原题链接,可以点进去测试 题目介绍 描述 给定一个有向图,图节点的拓扑排序定义如下: 对…...
【状态估计】基于随机方法优化PMU优化配置(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Rinne Loves Graph
Rinne Loves Graph (nowcoder.com) 链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 题目描述 Island 发生了一场暴乱!现在 Rinne 要和 Setsuna 立马到地上世界去。 众所周知:Island 是有一些奇怪的城镇和道路构成的…...
第15章:索引的数据结构
一、为什么使用索引 1.索引是存储引擎用于快速找到记录的一种数据结构。相当于一本书的目录。在进行数据查找时,首先查看查询条件是否命中某条索引,符合则通过索引查找相关数据。如果不符合则需要全表扫描,一条一条查找记录,直到…...
机械师曙光16电脑开机自动蓝屏怎么解决?
机械师曙光16电脑开机自动蓝屏怎么解决?有的用户在使用机械师曙光16电脑的时候,遇到了一些系统问题,导致自己无法正常的开机使用电脑。因为电脑总会变成蓝屏,无法进行任何操作。那么这个情况怎么去进行问题的解决呢?来…...
机器学习_Lasso回归_ElasticNet回归_PolynomialFeatures算法介绍_02---人工智能工作笔记0037
Lasso回归用的是L1正则化可以看到,这里的alpha就是这里的alpha对吧,就是 L1的权重 然后对于ElasticNet回归来说,这里的alpha可以看到是L1权重的超参数对吧,然后这里的p,表示的是 L2正则里面的(1-p)这里 这里要提一下: L1和L2为什么能防止过拟合,它们有什么区别?通过添加…...
第五篇:强化学习基础之马尔科夫决策过程
你好,我是zhenguo(郭震) 今天总结强化学习第五篇:马尔科夫决策过程 基础 马尔科夫决策过程(MDP)是强化学习的基础之一。下面统一称为:MDP MDP提供了描述序贯决策问题的数学框架。 它将决策问题建模为: 状态…...
Oracle面试题
1. 什么是存储过程,使用存储过程的好处? 存储过程(Stored Procedure )是一组为了完成特定功能的SQL 语句集,经编译后存储在数据库中。用户通过指定存储过程的名字并给出参数(如果该存储过程带有参数&#…...
用Vue写教务系统学生管理
文章目录 一.首先创建新的Demo二.在APP里面绑定DemoStudent三.源码附上四.效果图(新增记录还未实现) 一.首先创建新的Demo 二.在APP里面绑定DemoStudent <template><img alt"Vue logo" src"./assets/logo.png"><!--…...
专门用于管理企业与自己客户之间所有信息的客户管理系统
一、开源项目简介 关于 NXCRM NXCRM 是一套基于 Laravel 的 CRM 应用程序。它包含了一个管理中心,可以管理用户、客户、产品、订单、商机,合同,收款,附件,联系人,跟进动态,发票,业…...
(转载)基于多层编码遗传算法的车间调度算法(matlab实现)
以下内容大部分来源于《MATLAB智能算法30个案例分析》,仅为学习交流所用。 1 理论基础 遗传算法具有较强的问题求解能力,能够解决非线性优化问题。遗传算法中的每个染色体表示问题中的一个潜在最优解,对于简单的问题来说,染色体…...
Redis的常用数据结构之哈希类型
首先这里说的哈希类型针对的是redis中的value的k-v结构 常见的操作命令 hset设置值 hsetnx命令,不存在可以设置,存在设置不成功 hget取值,这里与字符串类型不同是要精确到filed。前面的判断也是基于field来实现的 要是field没有就返回null h…...
计算机组成原理-存储系统-缓存存储器(Cache)
目录 一、Cache基本概念 1.2性能分析 二、 Cache和主存的映射发生 2.1全相连映射编辑 2.2直接映射编辑 2.3组相连映射 三、Cachae的替换算法 3.1 随机算法(RADN) 3.2 先进先出算法(FIFO) 3.3 近期最少使用(LRU) 3.4 最近不经常使用(LFU) 四、写策略 4…...
打开c语言生成exe文件,出现闪退的解决方法
为什么打开c语言生成的exe文件,立马闪退。 起初个别问的时候,我只是简单的说明程序运行完了,就自动关了, 首先,生成的exe文件本质是控制台程序,这些都是依赖于windows的控制台窗口,程序执行完…...
算法基础学习笔记——⑩DFS与BFS\树与图
✨博主:命运之光 ✨专栏:算法基础学习 目录 DFS与BFS\树与图 ✨DFS ✨BFS 🍓宽搜流程图如下: 🍓宽搜流程: 🍓广搜模板 ✨树与图 🍓树是特殊的图(连通无环的图&am…...
chatgpt赋能python:Python中可迭代对象的介绍
Python中可迭代对象的介绍 Python是一种高级编程语言,它具有简单易学、可读性强、功能强大等特点,成为了数据科学、机器学习、Web开发等领域的热门选择。Python中有很多重要的概念和功能,其中之一就是支持可迭代对象的概念。 在Python中&am…...
报表控件FastReport使用指南——如何打开WebP格式的图片
FastReport 是功能齐全的报表控件,可以帮助开发者可以快速并高效地为.NET,VCL,COM,ActiveX应用程序添加报表支持,由于其独特的编程原则,现在已经成为了Delphi平台最优秀的报表控件,支持将编程开…...
【鲁棒、状态估计】用于电力系统动态状态估计的鲁棒迭代扩展卡尔曼滤波器研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
整理6个超好用的在线编辑器!
随着 Web 开发对图像可扩展性、响应性、交互性和可编程性的需求增加,SVG 图形成为最适合 Web 开发的图像格式之一。它因文件小、可压缩性强并且无论如何放大或缩小,图像都不会失真而受到欢迎。然而,为了编辑 SVG 图像,需要使用 SV…...
ArcGIS10.8下载及安装教程(附安装步骤)
谷歌云: https://drive.google.com/drive/folders/10igu7ZSMaR0v0WD7-2W-7ADJGMUFc2ze?uspsharing ArcGIS10.8 百度网盘: https://pan.baidu.com/s/1s5bL3QsCP5sgcftCPxc88w 提取码:kw4j 阿里云: https://www.aliyundriv…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
