当前位置: 首页 > news >正文

对KMP算法的一点碎碎念——上篇

对KMP算法的一点碎碎念——上篇

文章目录

  • 对KMP算法的一点碎碎念——上篇
    • 1. KMP 算法 Next数组 求解问题
      • 1.1 前置知识-最长公共前后缀LCP
        • 1.1.1 前缀与后缀
        • 1.1.2 最长公共前后缀LCP
      • 1.2 手算法求解 Next数组值(3种常见情况)
        • 1.2.1 情况1: next数组 正常存放匹配字符的长度
          • 情况1的失配回溯机制
        • 1.2.2 情况2: next数组 整体右移一位
          • 情况2的失配回溯机制
        • 1.2.3 情况3: next数组 整体右移一位并把next数组加1
          • 情况3的失配回溯机制
    • 参考资料

1. KMP 算法 Next数组 求解问题

假设有模式串T为:a b a b a c,求解与其对应的next数组为多少

1.1 前置知识-最长公共前后缀LCP

1.1.1 前缀与后缀

前缀的概念:前缀是 不包含最后一个字符 的所有 以第一个字符开头 的任意子串

后缀的概念:后缀是 不包含第一个字符 的所有 以最后一个字符结尾 的任意子串

例如字符串 “aba”

  1. 去掉最后一个字符后,剩下的都是前缀了

    a b a ab\xcancel{a} aba ,这里 ab 就是这个字符串的其中一个前缀

  2. 同理去掉第一个字符后,剩下的都是后缀了

    a b a \xcancel{a}ba a ba,这里 ba 就是这个字符串的其中一个后缀

为什么这里我说是其中一个前/后缀呢?

回到前后缀的概念上,前后缀都是以子串的形式存在的,也就是说,前后缀一定是模式串的子集

那么就好理解了,aba的前后缀表如下:

前缀后缀
aa
abba

1.1.2 最长公共前后缀LCP

概念:最长公共前后缀 (longest common prefix) 就是字符串中前缀和后缀的 最长匹配子串

例如,“aabaa”,我们从 前缀(prefix)和后缀(suffix) 中寻找最长的匹配子串

字符串 aabaa 的子串前缀(去掉最后一个字符)被去掉的字符后缀(去掉第一个字符)被去掉的字符前后缀最长匹配数(就是next值)
a a \xcancel{a} a a \xcancel{a} a 0
aaa a a a\xcancel{a} aa a a a \xcancel{a}a a a1
aaba, aa a a b aa\xcancel{b} aab b, ab a a b \xcancel{a}ab a ab0
aabaa, aa, aab a a b a aab\xcancel{a} aaba a, ba, aba a a b a \xcancel{a}aba a aba1
aabaaa, aa, aab, aaba a a b a a aaba\xcancel{a} aabaa a, aa, baa, abaa a a b a a \xcancel{a}abaa a abaa2

1.2 手算法求解 Next数组值(3种常见情况)

由于KMP算法中的next数组有不同的实现方式,因此为了避免大家弄混淆,我对每个实现next数组的方法做一些区分

1.2.1 情况1: next数组 正常存放匹配字符的长度

这是最常见的情况,基本上网络上大部分都是以这个情况为主来求解next数组值,我们上面也讨论过了next值如何得出

以模式串 “ababac” 为例,完整的next数组如下:

模式串下标012345
模式串ababac
next数组值001230
匹配的前后缀a b a
匹配位为前后缀 ‘a’
a b a b
匹配位为前后缀 ‘a b’
a b a b a
匹配位为前后缀 ‘a b a’

我们可以发现,每个字符下的next数组值都是存放着当前串的匹配长度

初学者可能会对第4个位置有疑惑,咱们一起来看如何求解?

模式串匹配到第4个字符后,前4个字符组成了一个串,即"ababa"

  • 前缀的集合为: a , a b , a b a , a b a b a,ab,aba,abab a,ab,aba,abab

  • 后缀的集合为: a , b a , a b a , b a b a a,ba,aba,baba a,ba,aba,baba

通过观察,我们可以看到集合中 a b a aba aba 为最长公共前后缀,且长度为3

情况1的失配回溯机制

假如文本串(主串)为 “abababac”,模式串为 “ababac”,在下标为5的位置发生失配

从图中我们看出:

  1. 左侧图,当主串S和模式串T比较到下标为5的位置时,发现主串和模式串不匹配,故模式串的指针j需要回退,回退的顺序为

    1. 寻找找从当前失配位置的前一位,它的next值是多少?

      当前失配位置为下标5,它前一位的next值为3

    2. 前一位的next值就是j要回退的位置的下标

      那么j要回退的位置就是 j = next[j-1] = next[4] = 3

  2. 右侧图,我们已经找到回退的位置了,故j回到下标为3的位置上继续与主串S重新匹配

还有一种的实现方式是和这个原理一样的,就是把这所有的next数组值减1,然后找回溯位置时再把next值加1而已

模式串下标012345
模式串ababac
next数组值-1-1012-1
回溯位:j = next[j-1] + 1

不难看出,虽然好理解,但是操作很繁琐。每一次j失配都需要找前一位的next值作为自己的回退位置,这时候有人对next数组做出了改进,当在当前位置失配时,直接获取当前失配位置的next值作为j回退的位置,这就是我们要讲解的下一种情况


1.2.2 情况2: next数组 整体右移一位

以模式串 “ababac” 为例,完整的next数组如下:

模式串下标012345
模式串ababac
next数组值-100123
匹配的前后缀a b a
匹配位为前后缀 ‘a’
a b a b
匹配位为前后缀 ‘a b’
a b a b a
匹配位为前后缀 ‘a b a’

你可能会疑惑,这样做也没什么区别啊,反而更难理解了?实则不然,我们看下面的比较方式就能看出来了

字符串匹配最本质的原理其实就是前后缀相匹配的问题,我们把模式串右移一位,在逻辑上更符合匹配的情况,这就是为什么大部分教程和书籍都用这两种方式讲解next数组值的原因。那么,除了逻辑上更符合之外,还有next数组右移一位还有什么优势呢?我们再看下面的图解

情况2的失配回溯机制

假如文本串(主串)为 “abababac”,模式串为 “ababac”,使用右移模式串T的方式与主串S进行匹配

当前位置不匹配,那么就直接从不匹配的位置获取next数组值,然后j就回退到当前位置的next对应的下标位置。对齐的那个地方不算一个步骤,只是为了让大家更好理解

通过以上图片对比,我们发现把next数组整体右移一位在一定情况下的匹配效率更高,这就是为什么右移next数组这么流行的原因了

回溯位:j = next[j]

1.2.3 情况3: next数组 整体右移一位并把next数组加1

以模式串 “ababac” 为例,完整的next数组如下:

模式串下标0123456
模式串ababac
next数组值011234
匹配的前后缀a b a
匹配位为前后缀 ‘a’
a b a b
匹配位为前后缀 ‘a b’
a b a b a
匹配位为前后缀 ‘a b a’

其实情况3的实现方式和情况2是一样的,只不过我们发现情况3的next数组的初始位置是从1开始,而情况1的next数组的初始位置是从0开始的

不过我个人认为,情况3更像是情况1和情况2的结合,它杂糅了它们的思想,为什么这么说?先给出结论

  1. 在回溯机制上,情况3的回溯机制思想和情况2的回溯机制思想是一样的

    都是当前位置不匹配,那么就直接从不匹配的位置获取next数组值,然后j就回退到当前位置的next对应的下标位置

    情况3的回溯机制也就是 j = next[j]
    而不是情况1的 j = next[j-1]
    
  2. 在next数组值确定上,情况3的数组值确定方式和情况1是一样的

    都是从当前位置及之前构成的串中寻找 最长公共前后缀,然后把匹配的值确定为当前位置的next值

情况3的失配回溯机制

假如文本串(主串)为 “abababac”,模式串为 “ababac”,使用右移模式串T并把下标加1的方式与主串S进行匹配

回溯位:j = next[j]

参考资料

KMP算法之求解next数组 (xiaohongshu.com)

帮你把 KMP 算法学个通透!(理论篇)

帮你把KMP算法学个通透!(求next数组代码篇)

KMP 算法之求next数组代码讲解

KMP算法精讲(1)——暴力匹配算法

KMP算法精讲(2)——什么是最长公共前后缀?

KMP算法精讲(3)——最长公共前后缀在KMP算法中的应用

KMP算法精讲(4)——15分钟搞定next数组

KMP Algorithm for Pattern Searching - GeeksforGeeks

Prefix function - Knuth-Morris-Pratt Algorithm - Coding Ninjas

相关文章:

对KMP算法的一点碎碎念——上篇

对KMP算法的一点碎碎念——上篇 文章目录 对KMP算法的一点碎碎念——上篇1. KMP 算法 Next数组 求解问题1.1 前置知识-最长公共前后缀LCP1.1.1 前缀与后缀1.1.2 最长公共前后缀LCP 1.2 手算法求解 Next数组值(3种常见情况)1.2.1 情况1: next数组 正常存放匹配字符的长度情况1的…...

算法---边界着色

题目 给你一个大小为 m x n 的整数矩阵 grid ,表示一个网格。另给你三个整数 row、col 和 color 。网格中的每个值表示该位置处的网格块的颜色。 两个网格块属于同一 连通分量 需满足下述全部条件: 两个网格块颜色相同 在上、下、左、右任意一个方向上…...

二叉排序树的查找、插入、删除

目录 二叉排序树的定义 二叉排序树的查找 二叉排序树的插入 二叉排序树的定义 二叉排序树的定义 二叉排序树(Binary Sort Tree, BST),也称二叉查找树。 二叉排序树或者是一棵空树,或者是一棵具有下列特性的非空二叉…...

《Opencv3编程入门》学习笔记—第三章

《Opencv3编程入门》学习笔记 记录一下在学习《Opencv3编程入门》这本书时遇到的问题或重要的知识点。 第三章 HighGUI图形用户界面初步 一、图像的载入、显示和输出到文件 &#xff08;一&#xff09;OpenCV的命名空间 简单的OpenCV程序标配&#xff1a; #include <o…...

如何从Ubuntu Linux中删除Firefox Snap?

Ubuntu Linux是一款广受欢迎的开源操作系统&#xff0c;拥有强大的功能和广泛的应用程序选择。默认情况下&#xff0c;Ubuntu提供了一种称为Snap的软件打包格式&#xff0c;用于安装和管理应用程序。Firefox是一款流行的开源网络浏览器&#xff0c;而Firefox Snap是Firefox的Sn…...

数学建模的初阶-快速上手

目录 第一步&#xff1a;明确问题 第二步&#xff1a;选择建模方法 第三步&#xff1a;收集数据 第四步&#xff1a;构建数学模型 第五步&#xff1a;模型验证与评估 数学建模软件推荐 统计模型 (1) 线性回归模型 (2) 逻辑回归模型 (3) 时间序列模型 优化模型 (1) …...

复习向 C/C++ 编程语言简介和概括(C++复习向p1)

文章目录 C 编程语言C 和 C 关系标准的 C 组成ANSI 标准比较重要的标准化时间 C 编程语言 是一种静态类型的、编译式的、通用式的、大小写敏感、不规则的编程语言支持过程化编程&#xff0c;面向对象&#xff0c;泛型编程 C 和 C 关系 C 是 C 的一个超集&#xff0c;任何合法…...

DRF之过滤,排序,分页

一、权限组件源码解读 1.继承了APIView 才有的---》执行流程---》dispatch中----》三大认证 APIView的dispatch def initial(self, request, *args, **kwargs):self.perform_authentication(request)self.check_permissions(request)self.check_throttles(request) 2 读…...

我的Redis学习,共写了14篇博客文章

早在19和20年全面学习SpringBoot相关技术知识时也曾经有学习到Redis&#xff0c;主要是看了几家的视频教程&#xff0c;但是未曾有具体的实践&#xff0c;后来再学习到Docker和Spring Session框架的Redis存储时&#xff0c;又稍微的实践了一丢丢&#xff0c;所有的实践也就仅此…...

mPython软件使用指南

①软件界面 一、软件界面的介绍 1.模式切换 硬件编程 Python3.6 Jupyter python3.6模式细节补充&#xff08;一般不使用该模式&#xff0c;此处可跳过&#xff09; Python3.6模式的界面 左侧指令分类栏 Python3.6模式的图形化指令分类分为&#xff1a; Python语法基础相关指令&…...

龙芯2K1000实战开发-系统配置详解

目录 概要 整体架构流程 技术名词解释 技术细节 ​编辑 总结...

【一起撸个DL框架】5 实现:自适应线性单元

CSDN个人主页&#xff1a;清风莫追欢迎关注本专栏&#xff1a;《一起撸个DL框架》GitHub获取源码&#xff1a;https://github.com/flying-forever/OurDLblibli视频合集&#xff1a;https://space.bilibili.com/3493285974772098/channel/series 文章目录 5 实现&#xff1a;自适…...

开箱即用的工具函数库xijs更新指南(v1.2.6)

xijs 是一款开箱即用的 js 业务工具库, 聚集于解决业务中遇到的常用函数逻辑问题, 帮助开发者更高效的开展业务开发. 接下来就和大家一起分享一下 v1.2.6 版本的更新内容以及后续的更新方向. 贡献者列表: 1. 计算变量内存calculateMemory 该模块主要由 zhengsixsix 贡献, 我们可…...

【Netty】ChannelPipeline源码分析(五)

文章目录 前言一、ChannelPipeline 接口1.1 创建 ChannelPipeline1.2 ChannelPipeline 事件传输机制1.2.1 处理出站事件1.2.2 处理入站事件 二、ChannelPipeline 中的 ChannelHandler三、ChannelHandlerContext 接口3.1 ChannelHandlerContext 与其他组件的关系3.2 跳过某些 Ch…...

并行计算技术解密:MPI和OpenMP的学习和应用指南

欢迎来到并行计算技术的奇妙世界&#xff01;本指南将带您深入了解MPI&#xff08;Message Passing Interface&#xff09;和OpenMP&#xff08;Open Multi-Processing&#xff09;两种重要的并行计算技术&#xff0c;并为您提供学习和应用的指南。无论您是一个科研工作者、开发…...

什么是自动化测试框架?我们该如何搭建自动化测试框架?

无论是在自动化测试实践&#xff0c;还是日常交流中&#xff0c;经常听到一个词&#xff1a;框架。之前学习自动化测试的过程中&#xff0c;一直对“框架”这个词知其然不知其所以然。 最近看了很多自动化相关的资料&#xff0c;加上自己的一些实践&#xff0c;算是对“框架”…...

Debezium报错处理系列之六十七:TopicAuthorizationException: Not authorized to access topics

Debezium报错处理系列之六十七:TopicAuthorizationException: Not authorized to access topics 一、完整报错二、错误原因三、解决方法Debezium报错处理系列一:The db history topic is missing. Debezium报错处理系列二:Make sure that the same history topic isn‘t sha…...

javaWebssh中小学课件资源系统myeclipse开发mysql数据库MVC模式java编程计算机网页设计

一、源码特点 java ssh中小学课件资源系统是一套完善的web设计系统&#xff08;系统采用ssh框架进行设计开发&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用 B/S模式开发。开发环境为TOMCAT…...

MySQL高级查询操作

文章目录 前言聚集函数分组查询&#xff1a;GROUP BY过滤&#xff1a;HAVING嵌套子查询比较运算中使用子查询带有IN的子查询SOME(子查询)ALL(子查询)EXISTS子查询 前言 查询语句书写顺序&#xff1a; 1、select 2、from 3、where 4、group by 5、having 6、order by 7、limit …...

Day53【动态规划】1143.最长公共子序列、1035.不相交的线、53.最大子序和

1143.最长公共子序列 力扣题目链接/文章讲解 视频讲解 本题最大的难点还是定义 dp 数组 本题和718.最长重复子数组区别在于这里不要求是连续的了&#xff0c;但要有相对顺序 直接动态规划五部曲&#xff01; 1、确定 dp 数组下标及值含义 dp[i][j]&#xff1a;取 text1…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...