当前位置: 首页 > news >正文

YOLO 格式数据集制作

目录

1. YOLO简介

2.分割数据集准备

3.代码展示

整理不易,欢迎一键三连!!!


1. YOLO简介

YOLO(You Only Look Once)是一种流行的目标检测和图像分割模型,由华盛顿大学的 Joseph Redmon 和 Ali Farhadi 开发。YOLO 的第一个版本于 2015 年发布,并因其高速度和准确性而迅速流行起来。

YOLO不同版本发行时间

版本时间
YOLOv12015
YOLOv22016
YOLOv32018
YOLOv42020
YOLOv52021
YOLOv82022

        以YOLOv5为例,说明同时支持图像分类、目标识别、图像分割的多任务网络训练的数据准备工作。这几天在网上找了好几天,一边摸索,一边准备自己的数据集,终于搞定了,记录下保姆级数据集准备的教程。


2.分割数据集准备

        通常的分割任务中数据集都是一张原始影像对应一张同样尺寸的掩模图像,YOLO最开始是跑目标检测任务,因此常用的数据组织格式都是一张原始影像对应一个json掩膜文件或者一个TXT掩膜文件,这个看不同的目标检测数据格式就知道(COCO /VOC/......),今天以一张影像对应一个txt掩膜为例来做自己的数据集。

       ------>           

 从原始的png掩膜转为YOLO需要的txt掩膜文件关键是找到txt文件中的内容和组织方式:

        从上面实例txt文件 可以看到, 第一行的第一个值为“45”,代表类别是45,后面的一堆小数点(0.78...)代表被归一化后的多边形的x,y坐标,归一化的标准是按照原始影像大小进行归一化,比如原始像素坐标为(10,20),原始影像尺寸为100*100,那归一化后的像素坐标为(0.1,0.2)。

        回车之后,第二行开始读取第二个目标的类别和位置,以此类推。


3.代码展示

from skimage import io
import cv2
import numpy as npdef mask_to_polygon(mask: np.array, report: bool = False) -> List[int]:contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)polygons = []for object in contours:coords = []for point in object:coords.append(int(point[0][0]))coords.append(int(point[0][1]))polygons.append(coords)if report:print(f"Number of points = {len(polygons[0])}")return np.array(polygons).ravel().tolist()mask = io.imread('/labels/xxx.png')
polygons = mask_to_polygon(mask, report=True)

        函数返回得到的polygons就是一个存放了一张影像中所有目标的多边形位置了,要想得到最终的txt文件,别忘了在前面加上影像类别哦。 

        如果像简化掩膜要素,就是把距离较近的点删除一些,减少掩膜文件的大小,可以参考下面的文章。

参考:二进制掩膜转txt

官方给出的COCO128-seg数据集:下载链接

欢迎投票,整理不易,一键三连!!!

相关文章:

YOLO 格式数据集制作

目录 1. YOLO简介 2.分割数据集准备 3.代码展示 整理不易,欢迎一键三连!!! 1. YOLO简介 YOLO(You Only Look Once)是一种流行的目标检测和图像分割模型,由华盛顿大学的 Joseph Redmon 和 Al…...

基于linux内核的驱动开发

1 字符设备驱动框架 1.1字符设备 定义:只能以一个字节一个字节的方式读写的设备,不能随机的读取设备中中的某一段数据,读取数据需要按照先后顺序。(字符设备是面向字节流的) 常见的字…...

找不到工作的测试员一大把,大厂却招不到优秀软件测试员?高薪难寻测试工程师。

测试工程师招了快一个月了,实在招不到合适的,已经在被解雇的边缘了。。。” 初级测试工程师非常多,但真正掌握测试思维、能力强的优秀测试太少了! 据我所知, 当下的测试人员不少状态都是这样的: 在工作中…...

buuctf Basic

buuctf Basic 1.Linux Labs 根据提示我们可以知道需要远程连接linux服务器,这里使用xshell进行如下配置 输入ssh的用户名root,密码123456 连接成功 构造命令 ls …/ 查看文件 查看flag cat …/flag.txt 为flag{8fee8783-1ed5-4b67-90eb-a1d603a0208…...

赛狐ERP|亚马逊产品缺货怎么办?该如何补救?

由于物流时效的延长,运输成本的增加,亚马逊的仓储限制等各种原因,断货问题很常成为亚马逊卖家的普遍困扰。那么亚马逊产品缺货应该怎么办!1、提高产品价格:除了卖自己的Listing此外,提高产品价格也是一种保…...

《Elasticsearch源码解读与优化实战》张超-读书笔记

写在前面 好久没更新博客了,应届狗没办法啊╮(╯▽╰)╭为了秋招搞了小半年,从去年5月到现在搞了两段实习(京东、游戏公司),最终年前拿到一家还不错的offer,现在已经入职实习了,不出意外的话以…...

编码踩坑——运行时报错java.lang.NoSuchMethodError / 同名类加载问题 / 双亲委派【建议收藏】

本篇介绍一个实际遇到的排查异常的case,涉及的知识点包括:类加载机制、jar包中的类加载顺序、JVM双亲委派模型、破坏双亲委派模型及自定义类加载器的代码示例;问题背景业务版本,旧功能升级,原先引用的一个二方包中的du…...

软件测试选Python还是Java?

目录 前言 1、先从一门语言开始 2、两个语言的区别 3、两个语言的测试栈技术 4、如何选择两种语言? 总结 前言 对于工作多年的从业者来说,同时掌握java和Python两门语言再好不过,可以大大增加找工作时的选择范围。但是对于转行的人或者…...

“2023数据安全智能化中国行”活动,开幕即高能

工信部等16部门近日发布的《关于促进数据安全产业发展的指导意见》提出,到2025年,数据安全产业基础能力和综合实力明显增强,数据安全产业规模超过1500亿元,年复合增长率超过30%。到2035年,数据安全产业进入繁荣成熟期。…...

机器人操作规划——Deep Visual Foresight for Planning Robot Motion(2017 ICRA)

1 简介 model-based RL方法,预测Action对图像的变化,以push任务进行研究。 采用完全自监督的学习方式,不需要相机标定、3D模型、深度图像和物理仿真。 2 数据集 采用几百个物体、10个7dof机械臂采集了包括5万个push attempts的数据集。 每…...

go 连接redis集群

最近用redis shake做redis数据迁移,由于redis提供的客户端没有用于查看集群的工具,且我部署的redis集群是基于k8s来构建的,没有使用ingress做转发,所以只能在k8s内部访问集群,于是我先用gogin框架编写了访问redis集群的…...

LeetCode 146. LRU 缓存

原题链接 难度:middle\color{orange}{middle}middle 题目描述 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCacheLRUCacheLRUCache 类: LRUCache(intcapacity)LRUCache(int capacity)LRUCache(intcapacity) 以 正整数 …...

【mac】在m2 mbp上通过Parallels Desktop安装ubuntu22.04

文章目录前言一、参考文章二、版本信息三、方法1:通过ubuntu官网提供的iso安装3.1 配置服务器3.2 安装图形界面四、方法2:通过Parallels Desktop提供的安装包五、 小工具5.1 调整应用栏图标大小5.2 ubuntu获取mac的剪切板5.3 调整terminal字体大小5.4 安装samba5.5 ubuntu连接m…...

C++类和对象,初见类

坚持看完,结尾有思维导图总结 这里写目录标题C语言和 C 的区别类的定义类的初认识类的内容访问限定符类的作用域类的实例化类中的 this 指针总结C语言和 C 的区别 C 的祖师爷除了在 C语言的基础上化简了一些复杂操作 更为重要的是,两个语言实现的过程是…...

Redis常用数据结构及应用场景

1.总体结构 Redis中的数据,总体上是键值对,不同数据类型指的是键值对中值的类型。 2.string类型 Redis中最基本的类型,它是key对应的一个单一值。二进制安全,不必担心由于编码等问题导致二进制数据变化。所以redis的string可以…...

C++虚继承内存布局

C菱形继承内存布局 编译器&#xff1a;Visual Studio 2019 关于如何查看内存布局 B class B { public:B(): _ib(10), _cb(B){cout << "B()" << endl;}B(int ib, char cb): _ib(ib), _cb(cb){cout << "B(int,char)" << endl;}vi…...

IO模型--从BIO、NIO、AIO到内核select、poll、epoll剖析

IO基本概述 IO的分类 IO以不同的维度划分&#xff0c;可以被分为多种类型&#xff1b;从工作层面划分成磁盘IO&#xff08;本地IO&#xff09;和网络IO&#xff1b; 也从工作模式上划分&#xff1a;BIO、NIO、AIO&#xff1b;从工作性质上分为阻塞式IO与非阻塞式IO&#xff1b…...

Zebec完成BNB Chain以及Near链上协议部署,多链化进程加速

从去年开始&#xff0c;Zebec 就开始以多链的形式来拓展自身的流支付生态&#xff0c;一方面向更多的区块链系统拓展自身流支付协议&#xff0c;即从Solana上向EVM链上对协议与通证等进行迁移与拓展。目前基本完成了在BNB Chain以及Near上的合约部署&#xff0c;且能够在这些EV…...

wpscan常见的使用方法

目录 简单介绍 暴力破解 信息收集 指定用户爆破 命令集合 简单介绍 Wordpress是一个以PHP和MySQL为平台的免费自由开源的博客软件和内容管理系统。 WPScan是Kali Linux默认自带的一款漏洞扫描工具&#xff0c;它采用Ruby编写&#xff0c;能够扫描WordPress网站中的多种安…...

Tree 底层源码实现(二叉树、递归、迭代)

树&#xff08;Tree&#xff09;是一种非线性数据结构&#xff0c;由一组节点和它们之间的边组成。在树中&#xff0c;每个节点都有零个或多个子节点&#xff0c;除了根节点外&#xff0c;每个节点都有且仅有一个父节点。树可以被用于许多应用程序&#xff0c;如文件系统、XML文…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

AD学习(3)

1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分&#xff1a; &#xff08;1&#xff09;PCB焊盘&#xff1a;表层的铜 &#xff0c;top层的铜 &#xff08;2&#xff09;管脚序号&#xff1a;用来关联原理图中的管脚的序号&#xff0c;原理图的序号需要和PCB封装一一…...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】&#xff0c;这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...