当前位置: 首页 > news >正文

常微分方程ODE和Neural Ordinary Differential Equations

微分方程(英語:Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。

常微分方程(英語:ordinary differential equation,簡稱ODE)是未知函数只含有一个自变量的微分方程。

很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移  和时间  的关系就可以表示为如下常微分方程: 

 

ODE solver是常微分方程的数值解法工具。它使用数值解法来近似求解常微分方程,得到近似的解。 

 

 从输入层 h(0) 开始,我们可以将输出层 h(T ) 定义为这个 ODE 初始值问题在某个时间 T 的解。该值可以由黑盒微分方程求解器计算。

给定z(t0)和f的参数,向前传播求解z(t1)很容易。(只需要一个ODESolve)

但是用反向传播求L 关于 θ 的梯度,怎么求?

 

第一步是确定损失的梯度如何取决于每个时刻的隐藏状态 z(t)。这个量称为伴

a(t) = ∂L /∂z(t) 。它的动态由另一个 ODE 给出,

               (35)

我们指出了伴随方法和反向传播(等式 38)之间的相似性。类似于反向传播,伴随态的 ODE 需要及时向后求解。我们在最后一次指定为约束点,就是最后一个时间点的loss的梯度,可以得到关于任何时候的隐藏状态,

 t为tN的时候,∂f(z(t), t, θ) /∂z(t)的计算方法和其他时间点没有区别,只是把t的值换成tN而已。我们只需要把z(tN)和tN输入到f中,然后用自动微分的方法求出f对z(tN)的偏导数就可以了。

 扩展上面的方法,推广可以得到关于 θ 的梯度

 

 

 f 的雅可比行列式(指f对它的输入变量的偏导数组成的矩阵)具有以下形式

结合(35)

 

 

 

 

 算法1的目的是计算一个常微分方程初值问题的反向模式导数,也就是损失函数对参数的梯度

 

 

 

 

 

 

 

 

 

 

 

相关文章:

常微分方程ODE和Neural Ordinary Differential Equations

微分方程(英語:Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 常微分方程(英…...

C++ 编译过程(附简单实例)

C 采用分离编译模式,分离编译指的是,一个程序/项目是由若干个源文件共同实现,编译时先把每个源文件单独编译生成目标文件,再将所有目标文件连接起来,形成单一的可执行文件。 C 编译的四个阶段:预处理、编译…...

ThingsBoard教程(五四):规则节点解析 Azure IoT Hub Node, RabbitMQ Node

Azure IoT Hub Node Since TB Version 2.5.3 配置 主题 - 获取有关IoT Hub主题的更多信息,请使用以下链接。主机名 - Azure IoT Hub主机名。设备ID - 来自Azure IoT Hub的设备ID。凭据 - Azure IoT Hub连接凭据。可以是共享访问签名或PEM格式证书。Azure IoT Hub支持不同的…...

元素偏移量offset

文章目录 1. offset概述2. offset与style的区别 1. offset概述 offset就是偏移量,我们使用offset系列相关属性可以动态的得到该属性的位置(偏移)、大小等。 element.offsetParent 返回作为该元素带有定位的父级元素,如果父级都没…...

如何让自动化测试框架更自动化?

一、引言 ​对于大厂的同学来说,接口自动化是个老生常谈的话题了,毕竟每年的MTSC大会议题都已经能佐证了,不是大数据测试,就是AI测试等等(越来越高大上了)。不可否认这些专项的方向是质量智能化发展的方向&…...

无屏幕实现连接树莓派

无屏幕实现连接树莓派 欢迎来到我的博客!今天我将与大家分享如何无需使用屏幕,实现与树莓派的连接。对于那些在树莓派项目中不方便使用屏幕的人来说,这将是一个有用的技巧。 材料清单 在开始之前,让我们先准备好所需的材料&…...

【Android】AMS(一)系统启动流程

前言 AMS(Activity Manager Service)即活动管理器服务,是Android系统中的一个核心服务。它主要负责管理应用程序的生命周期,包括启动应用程序、切换应用程序、管理任务栈等。 Android启动流程 Android程序的启动流程可以概括为…...

FineBI6.0基础学习第一课 数据门户

PC端门户使用示例 首先,以管理员身份登录FineBI系统,安装数据门户,安装步骤见官网 新建一个数据门户...

如何部署项目到Tomcat + 第一个Servlet程序

博主简介:想进大厂的打工人博主主页:xyk:所属专栏: JavaEE初阶 目录 文章目录 一、Tomcat 1.1 Tomcat是什么 1.2 下载安装 1.3 部署项目 二、第一个Servlet程序 2.1 Servlet是什么 2.2 创建Maven项目 2.3 引入依赖 2.4 创建目录 2.5 编写类方法 2.6 打包…...

牛客刷题(HTML-Day1)

第一题&#xff1a; 1.下列代码在页面中显示的内容为&#xff08; &#xff09; <!DOCTYPE html> <html> <body> <p>hello<q>html</q></p> </body> </html> A hello“html” B hello html C hello“”html D 其他几…...

性能测试如何入门?熬夜7天整理出这一份3000字超全学习指南

赶鸭子上架要我搞性能测试&#xff0c;怎么办&#xff1f; 我第一次真正意义上搞性能测试是在2014年。项目组要求搞性能测试&#xff0c;我之前也没搞过&#xff0c;对服务端也不熟悉。就那么一脸懵逼地开始搞性能。当时我连linux上有哪些能看系统资源的命令都不知道。稀里糊涂…...

信息安全实践1.2(重放攻击)

前言 这个实验是看一本书做的&#xff0c;就是李华峰老师的书——《Metasploit Web 渗透测试实战》&#xff0c;我之前写过一篇Slowloris DoS攻击的博客&#xff0c;也是看这本书写的&#xff0c;总的来说&#xff0c;有用处。这篇博客其实也只是很浅显的去做一下重放攻击。 要…...

上海亚商投顾:沪指高开高走 地产股迎来久违反弹

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 市场情绪 三大指数今日高开高走&#xff0c;沪指午后涨近1%&#xff0c;深成指、创业板指涨超1.2%&#xff0c;上证50盘中大…...

Vim学习笔记【Ch02】

Vim学习笔记 系列笔记链接Ch02 Buffers, Windows, TabsBuffers什么是buffer查看所有bufferbuffer之间的切换删除buffer退出所有窗口 Windows窗口的创建窗口切换快捷键其他快捷键 Tabs什么是tabtab相关命令 window和buffer结合的3D移动小结 系列笔记链接 Ch00&#xff0c;Ch01 …...

《低代码指南》——低代码维格云能源行业解决方案

目录 典型场景介绍: 一、能源资产管理 二、碳核查 三、配电运营 总 结: 从业界实际情况来看,流程建设本身是一个对业务现实进行抽象的过程,这个过程即使不考虑软件开发的门槛,对于很多客户而言也是个涉及较长周期的复杂工作,往往需要咨询专家或专业公司帮助其建设内…...

【自制C++深度学习推理框架】Layer的设计思路

Layer的设计思路 Layer的抽象 如果将深度学习中的所有层分为两类, 那么肯定是"带权重"的层和"不带权重"的层。 基于层的共性&#xff0c;我们定义了一个Layer的基类&#xff0c;提供了一些基本接口&#xff0c;并可以通过继承和多态机制实现不同类型的L…...

Rust每日一练(Leetday0011) 下一排列、有效括号、搜索旋转数组

目录 31. 下一个排列 Next Permutation &#x1f31f;&#x1f31f; 32. 最长有效括号 Longest Valid Parentheses &#x1f31f;&#x1f31f;&#x1f31f; 33. 搜索旋转排序数组 Search-in-rotated-sorted-array &#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷…...

STL --- 五. 函数对象 Function Objects

目录 1、函数对象的定义和作用 2、函数对象的分类和使用 3、std 常用的函数对象 4、函数对象的适配器 5、std 算法和函数对象区别 1、函数对象的定义和作用 STL&#xff08;Standard Template Library&#xff09;中的函数对象&#xff08;Functor&#xff09;是一种重载…...

Java IO 流操作详解

Java IO 流操作详解 一、简介1. 什么是IO流2. IO流的分类3. IO流的作用 二、Java IO流的输入操作1. 文件输入流2. 字节输入流3. 缓冲输入流4. 对象输入流 三、Java IO流的输出操作1. 文件输出流2. 字节输出流3. 缓冲输出流4. 对象输出流 四、Java IO流的常用方法解析1. 字节读写…...

Halcon 形状匹配参数详解

find_shape_model(Image : : ModelID, AngleStart, AngleExtent, MinScore, NumMatches, MaxOverlap, SubPixel, NumLevels, Greediness : Row, Column, Angle, Score) find_shape_model(Image : : //搜索图像 ModelID, //模板句柄 AngleStart, // 搜索时的起始角度 AngleExte…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...