常微分方程ODE和Neural Ordinary Differential Equations
微分方程(英語:Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。
常微分方程(英語:ordinary differential equation,簡稱ODE)是未知函数只含有一个自变量的微分方程。
很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 和时间 的关系就可以表示为如下常微分方程:

ODE solver是常微分方程的数值解法工具。它使用数值解法来近似求解常微分方程,得到近似的解。

从输入层 h(0) 开始,我们可以将输出层 h(T ) 定义为这个 ODE 初始值问题在某个时间 T 的解。该值可以由黑盒微分方程求解器计算。
给定z(t0)和f的参数,向前传播求解z(t1)很容易。(只需要一个ODESolve)
但是用反向传播求L 关于 θ 的梯度,怎么求?

第一步是确定损失的梯度如何取决于每个时刻的隐藏状态 z(t)。这个量称为伴
随 a(t) = ∂L /∂z(t) 。它的动态由另一个 ODE 给出,
(35)
我们指出了伴随方法和反向传播(等式 38)之间的相似性。类似于反向传播,伴随态的 ODE 需要及时向后求解。我们在最后一次指定为约束点,就是最后一个时间点的loss的梯度,可以得到关于任何时候的隐藏状态,

t为tN的时候,∂f(z(t), t, θ) /∂z(t)的计算方法和其他时间点没有区别,只是把t的值换成tN而已。我们只需要把z(tN)和tN输入到f中,然后用自动微分的方法求出f对z(tN)的偏导数就可以了。
扩展上面的方法,推广可以得到关于 θ 的梯度


f 的雅可比行列式(指f对它的输入变量的偏导数组成的矩阵)具有以下形式
结合(35)




算法1的目的是计算一个常微分方程初值问题的反向模式导数,也就是损失函数对参数的梯度







相关文章:
常微分方程ODE和Neural Ordinary Differential Equations
微分方程(英語:Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 常微分方程(英…...
C++ 编译过程(附简单实例)
C 采用分离编译模式,分离编译指的是,一个程序/项目是由若干个源文件共同实现,编译时先把每个源文件单独编译生成目标文件,再将所有目标文件连接起来,形成单一的可执行文件。 C 编译的四个阶段:预处理、编译…...
ThingsBoard教程(五四):规则节点解析 Azure IoT Hub Node, RabbitMQ Node
Azure IoT Hub Node Since TB Version 2.5.3 配置 主题 - 获取有关IoT Hub主题的更多信息,请使用以下链接。主机名 - Azure IoT Hub主机名。设备ID - 来自Azure IoT Hub的设备ID。凭据 - Azure IoT Hub连接凭据。可以是共享访问签名或PEM格式证书。Azure IoT Hub支持不同的…...
元素偏移量offset
文章目录 1. offset概述2. offset与style的区别 1. offset概述 offset就是偏移量,我们使用offset系列相关属性可以动态的得到该属性的位置(偏移)、大小等。 element.offsetParent 返回作为该元素带有定位的父级元素,如果父级都没…...
如何让自动化测试框架更自动化?
一、引言 对于大厂的同学来说,接口自动化是个老生常谈的话题了,毕竟每年的MTSC大会议题都已经能佐证了,不是大数据测试,就是AI测试等等(越来越高大上了)。不可否认这些专项的方向是质量智能化发展的方向&…...
无屏幕实现连接树莓派
无屏幕实现连接树莓派 欢迎来到我的博客!今天我将与大家分享如何无需使用屏幕,实现与树莓派的连接。对于那些在树莓派项目中不方便使用屏幕的人来说,这将是一个有用的技巧。 材料清单 在开始之前,让我们先准备好所需的材料&…...
【Android】AMS(一)系统启动流程
前言 AMS(Activity Manager Service)即活动管理器服务,是Android系统中的一个核心服务。它主要负责管理应用程序的生命周期,包括启动应用程序、切换应用程序、管理任务栈等。 Android启动流程 Android程序的启动流程可以概括为…...
FineBI6.0基础学习第一课 数据门户
PC端门户使用示例 首先,以管理员身份登录FineBI系统,安装数据门户,安装步骤见官网 新建一个数据门户...
如何部署项目到Tomcat + 第一个Servlet程序
博主简介:想进大厂的打工人博主主页:xyk:所属专栏: JavaEE初阶 目录 文章目录 一、Tomcat 1.1 Tomcat是什么 1.2 下载安装 1.3 部署项目 二、第一个Servlet程序 2.1 Servlet是什么 2.2 创建Maven项目 2.3 引入依赖 2.4 创建目录 2.5 编写类方法 2.6 打包…...
牛客刷题(HTML-Day1)
第一题: 1.下列代码在页面中显示的内容为( ) <!DOCTYPE html> <html> <body> <p>hello<q>html</q></p> </body> </html> A hello“html” B hello html C hello“”html D 其他几…...
性能测试如何入门?熬夜7天整理出这一份3000字超全学习指南
赶鸭子上架要我搞性能测试,怎么办? 我第一次真正意义上搞性能测试是在2014年。项目组要求搞性能测试,我之前也没搞过,对服务端也不熟悉。就那么一脸懵逼地开始搞性能。当时我连linux上有哪些能看系统资源的命令都不知道。稀里糊涂…...
信息安全实践1.2(重放攻击)
前言 这个实验是看一本书做的,就是李华峰老师的书——《Metasploit Web 渗透测试实战》,我之前写过一篇Slowloris DoS攻击的博客,也是看这本书写的,总的来说,有用处。这篇博客其实也只是很浅显的去做一下重放攻击。 要…...
上海亚商投顾:沪指高开高走 地产股迎来久违反弹
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 市场情绪 三大指数今日高开高走,沪指午后涨近1%,深成指、创业板指涨超1.2%,上证50盘中大…...
Vim学习笔记【Ch02】
Vim学习笔记 系列笔记链接Ch02 Buffers, Windows, TabsBuffers什么是buffer查看所有bufferbuffer之间的切换删除buffer退出所有窗口 Windows窗口的创建窗口切换快捷键其他快捷键 Tabs什么是tabtab相关命令 window和buffer结合的3D移动小结 系列笔记链接 Ch00,Ch01 …...
《低代码指南》——低代码维格云能源行业解决方案
目录 典型场景介绍: 一、能源资产管理 二、碳核查 三、配电运营 总 结: 从业界实际情况来看,流程建设本身是一个对业务现实进行抽象的过程,这个过程即使不考虑软件开发的门槛,对于很多客户而言也是个涉及较长周期的复杂工作,往往需要咨询专家或专业公司帮助其建设内…...
【自制C++深度学习推理框架】Layer的设计思路
Layer的设计思路 Layer的抽象 如果将深度学习中的所有层分为两类, 那么肯定是"带权重"的层和"不带权重"的层。 基于层的共性,我们定义了一个Layer的基类,提供了一些基本接口,并可以通过继承和多态机制实现不同类型的L…...
Rust每日一练(Leetday0011) 下一排列、有效括号、搜索旋转数组
目录 31. 下一个排列 Next Permutation 🌟🌟 32. 最长有效括号 Longest Valid Parentheses 🌟🌟🌟 33. 搜索旋转排序数组 Search-in-rotated-sorted-array 🌟🌟 🌟 每日一练刷…...
STL --- 五. 函数对象 Function Objects
目录 1、函数对象的定义和作用 2、函数对象的分类和使用 3、std 常用的函数对象 4、函数对象的适配器 5、std 算法和函数对象区别 1、函数对象的定义和作用 STL(Standard Template Library)中的函数对象(Functor)是一种重载…...
Java IO 流操作详解
Java IO 流操作详解 一、简介1. 什么是IO流2. IO流的分类3. IO流的作用 二、Java IO流的输入操作1. 文件输入流2. 字节输入流3. 缓冲输入流4. 对象输入流 三、Java IO流的输出操作1. 文件输出流2. 字节输出流3. 缓冲输出流4. 对象输出流 四、Java IO流的常用方法解析1. 字节读写…...
Halcon 形状匹配参数详解
find_shape_model(Image : : ModelID, AngleStart, AngleExtent, MinScore, NumMatches, MaxOverlap, SubPixel, NumLevels, Greediness : Row, Column, Angle, Score) find_shape_model(Image : : //搜索图像 ModelID, //模板句柄 AngleStart, // 搜索时的起始角度 AngleExte…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...
