常微分方程ODE和Neural Ordinary Differential Equations
微分方程(英語:Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。
常微分方程(英語:ordinary differential equation,簡稱ODE)是未知函数只含有一个自变量的微分方程。
很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 和时间 的关系就可以表示为如下常微分方程:
ODE solver是常微分方程的数值解法工具。它使用数值解法来近似求解常微分方程,得到近似的解。
从输入层 h(0) 开始,我们可以将输出层 h(T ) 定义为这个 ODE 初始值问题在某个时间 T 的解。该值可以由黑盒微分方程求解器计算。
给定z(t0)和f的参数,向前传播求解z(t1)很容易。(只需要一个ODESolve)
但是用反向传播求L 关于 θ 的梯度,怎么求?
第一步是确定损失的梯度如何取决于每个时刻的隐藏状态 z(t)。这个量称为伴
随 a(t) = ∂L /∂z(t) 。它的动态由另一个 ODE 给出,
(35)
我们指出了伴随方法和反向传播(等式 38)之间的相似性。类似于反向传播,伴随态的 ODE 需要及时向后求解。我们在最后一次指定为约束点,就是最后一个时间点的loss的梯度,可以得到关于任何时候的隐藏状态,
t为tN的时候,∂f(z(t), t, θ) /∂z(t)的计算方法和其他时间点没有区别,只是把t的值换成tN而已。我们只需要把z(tN)和tN输入到f中,然后用自动微分的方法求出f对z(tN)的偏导数就可以了。
扩展上面的方法,推广可以得到关于 θ 的梯度
f 的雅可比行列式(指f对它的输入变量的偏导数组成的矩阵)具有以下形式
结合(35)
算法1的目的是计算一个常微分方程初值问题的反向模式导数,也就是损失函数对参数的梯度
相关文章:

常微分方程ODE和Neural Ordinary Differential Equations
微分方程(英語:Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 常微分方程(英…...

C++ 编译过程(附简单实例)
C 采用分离编译模式,分离编译指的是,一个程序/项目是由若干个源文件共同实现,编译时先把每个源文件单独编译生成目标文件,再将所有目标文件连接起来,形成单一的可执行文件。 C 编译的四个阶段:预处理、编译…...

ThingsBoard教程(五四):规则节点解析 Azure IoT Hub Node, RabbitMQ Node
Azure IoT Hub Node Since TB Version 2.5.3 配置 主题 - 获取有关IoT Hub主题的更多信息,请使用以下链接。主机名 - Azure IoT Hub主机名。设备ID - 来自Azure IoT Hub的设备ID。凭据 - Azure IoT Hub连接凭据。可以是共享访问签名或PEM格式证书。Azure IoT Hub支持不同的…...
元素偏移量offset
文章目录 1. offset概述2. offset与style的区别 1. offset概述 offset就是偏移量,我们使用offset系列相关属性可以动态的得到该属性的位置(偏移)、大小等。 element.offsetParent 返回作为该元素带有定位的父级元素,如果父级都没…...

如何让自动化测试框架更自动化?
一、引言 对于大厂的同学来说,接口自动化是个老生常谈的话题了,毕竟每年的MTSC大会议题都已经能佐证了,不是大数据测试,就是AI测试等等(越来越高大上了)。不可否认这些专项的方向是质量智能化发展的方向&…...
无屏幕实现连接树莓派
无屏幕实现连接树莓派 欢迎来到我的博客!今天我将与大家分享如何无需使用屏幕,实现与树莓派的连接。对于那些在树莓派项目中不方便使用屏幕的人来说,这将是一个有用的技巧。 材料清单 在开始之前,让我们先准备好所需的材料&…...
【Android】AMS(一)系统启动流程
前言 AMS(Activity Manager Service)即活动管理器服务,是Android系统中的一个核心服务。它主要负责管理应用程序的生命周期,包括启动应用程序、切换应用程序、管理任务栈等。 Android启动流程 Android程序的启动流程可以概括为…...

FineBI6.0基础学习第一课 数据门户
PC端门户使用示例 首先,以管理员身份登录FineBI系统,安装数据门户,安装步骤见官网 新建一个数据门户...

如何部署项目到Tomcat + 第一个Servlet程序
博主简介:想进大厂的打工人博主主页:xyk:所属专栏: JavaEE初阶 目录 文章目录 一、Tomcat 1.1 Tomcat是什么 1.2 下载安装 1.3 部署项目 二、第一个Servlet程序 2.1 Servlet是什么 2.2 创建Maven项目 2.3 引入依赖 2.4 创建目录 2.5 编写类方法 2.6 打包…...
牛客刷题(HTML-Day1)
第一题: 1.下列代码在页面中显示的内容为( ) <!DOCTYPE html> <html> <body> <p>hello<q>html</q></p> </body> </html> A hello“html” B hello html C hello“”html D 其他几…...

性能测试如何入门?熬夜7天整理出这一份3000字超全学习指南
赶鸭子上架要我搞性能测试,怎么办? 我第一次真正意义上搞性能测试是在2014年。项目组要求搞性能测试,我之前也没搞过,对服务端也不熟悉。就那么一脸懵逼地开始搞性能。当时我连linux上有哪些能看系统资源的命令都不知道。稀里糊涂…...

信息安全实践1.2(重放攻击)
前言 这个实验是看一本书做的,就是李华峰老师的书——《Metasploit Web 渗透测试实战》,我之前写过一篇Slowloris DoS攻击的博客,也是看这本书写的,总的来说,有用处。这篇博客其实也只是很浅显的去做一下重放攻击。 要…...

上海亚商投顾:沪指高开高走 地产股迎来久违反弹
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 市场情绪 三大指数今日高开高走,沪指午后涨近1%,深成指、创业板指涨超1.2%,上证50盘中大…...

Vim学习笔记【Ch02】
Vim学习笔记 系列笔记链接Ch02 Buffers, Windows, TabsBuffers什么是buffer查看所有bufferbuffer之间的切换删除buffer退出所有窗口 Windows窗口的创建窗口切换快捷键其他快捷键 Tabs什么是tabtab相关命令 window和buffer结合的3D移动小结 系列笔记链接 Ch00,Ch01 …...

《低代码指南》——低代码维格云能源行业解决方案
目录 典型场景介绍: 一、能源资产管理 二、碳核查 三、配电运营 总 结: 从业界实际情况来看,流程建设本身是一个对业务现实进行抽象的过程,这个过程即使不考虑软件开发的门槛,对于很多客户而言也是个涉及较长周期的复杂工作,往往需要咨询专家或专业公司帮助其建设内…...
【自制C++深度学习推理框架】Layer的设计思路
Layer的设计思路 Layer的抽象 如果将深度学习中的所有层分为两类, 那么肯定是"带权重"的层和"不带权重"的层。 基于层的共性,我们定义了一个Layer的基类,提供了一些基本接口,并可以通过继承和多态机制实现不同类型的L…...

Rust每日一练(Leetday0011) 下一排列、有效括号、搜索旋转数组
目录 31. 下一个排列 Next Permutation 🌟🌟 32. 最长有效括号 Longest Valid Parentheses 🌟🌟🌟 33. 搜索旋转排序数组 Search-in-rotated-sorted-array 🌟🌟 🌟 每日一练刷…...
STL --- 五. 函数对象 Function Objects
目录 1、函数对象的定义和作用 2、函数对象的分类和使用 3、std 常用的函数对象 4、函数对象的适配器 5、std 算法和函数对象区别 1、函数对象的定义和作用 STL(Standard Template Library)中的函数对象(Functor)是一种重载…...
Java IO 流操作详解
Java IO 流操作详解 一、简介1. 什么是IO流2. IO流的分类3. IO流的作用 二、Java IO流的输入操作1. 文件输入流2. 字节输入流3. 缓冲输入流4. 对象输入流 三、Java IO流的输出操作1. 文件输出流2. 字节输出流3. 缓冲输出流4. 对象输出流 四、Java IO流的常用方法解析1. 字节读写…...
Halcon 形状匹配参数详解
find_shape_model(Image : : ModelID, AngleStart, AngleExtent, MinScore, NumMatches, MaxOverlap, SubPixel, NumLevels, Greediness : Row, Column, Angle, Score) find_shape_model(Image : : //搜索图像 ModelID, //模板句柄 AngleStart, // 搜索时的起始角度 AngleExte…...

IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...