隔板法(求解的组数)
文章目录
- 隔板法(求解的组数)
- 隔板法
- 扩展
- 例题
隔板法(求解的组数)
文章首发于我的个人博客:欢迎大佬们来逛逛
隔板法
隔板法能够解决的问题:
- 求线性不定方程的解的组数
- 求相同元素分组的方案数
给我们 n n n 个球, k k k 个盒子,要求把这些球放进这些盒子中,一共有多少种不同的放的方案数?
例如:
n = 4 , k = 3 n=4,k=3 n=4,k=3 ,方案如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IUTQYuPA-1685533049927)(%E9%9A%94%E6%9D%BF%E6%B3%95%EF%BC%88%E6%B1%82%E8%A7%A3%E7%9A%84%E7%BB%84%E6%95%B0%EF%BC%89%206f4140365b494c00a1407852acf8dd57/Untitled.png)]
容易看出,我们可以划分为 1 1 2 ; 1 2 1; 2 1 1 三种不同的方案。
我们可以把这个问题转换为这样的一个模型:
- 在 x i > = 1 x_i>=1 xi>=1 的条件下,求 x 1 + x 2 + x 3 + . . . + x k = n x_1+x_2+x_3+...+x_k=n x1+x2+x3+...+xk=n 的方程解的组数
即在这个问题中,方程的解的组数就是:
- ( x 1 , x 2 , x 3 ) = ( 1 , 1 , 2 ) (x_1,x_2,x_3)=(1,1,2) (x1,x2,x3)=(1,1,2)
- ( x 1 , x 2 , x 3 ) = ( 1 , 2 , 1 ) (x_1,x_2,x_3)=(1,2,1) (x1,x2,x3)=(1,2,1)
- ( x 1 , x 2 , x 3 ) = ( 2 , 1 , 1 ) (x_1,x_2,x_3)=(2,1,1) (x1,x2,x3)=(2,1,1)
如何解决这个问题呢?
注意到我们总共有 k = 3 k=3 k=3 个盒子,相当于我们有 k − 1 = 2 k-1=2 k−1=2 块板子,然后把这两块板子放到不同的间隔方案数。
对于板子,我们有 k − 1 k-1 k−1 块;对于间隔,我们有 n − 1 n-1 n−1 个位置。
因此就是求: ∗ ∗ C n − 1 k − 1 **C_{n-1}^{k-1} ∗∗Cn−1k−1 的方案数**
扩展
与前面不同,我们需要求在 x i > = 0 x_i>=0 xi>=0 的条件下,求 x 1 + x 2 + x 3 + . . . + x k = n x_1+x_2+x_3+...+x_k=n x1+x2+x3+...+xk=n 的方程解的组数
假设 y i = x i + 1 y_i=x_i+1 yi=xi+1 ,那么 y 1 + y 2 + y 3 + . . . + y k = n + k = m y_1+y_2+y_3+...+y_k=n+k=m y1+y2+y3+...+yk=n+k=m
因此就可以转换为求: C m − 1 k − 1 = C n + k − 1 k − 1 C_{m-1}^{k-1} =C_{n+k-1}^{k-1} Cm−1k−1=Cn+k−1k−1 的方法数
我们需要求在 x i > = a i > = 0 , ∑ 1 n a i < = p x_i>=a_i>=0, \sum_{1}^{n}a_i<=p xi>=ai>=0,∑1nai<=p 的条件下,求 x 1 + x 2 + x 3 + . . . + x k = n x_1+x_2+x_3+...+x_k=n x1+x2+x3+...+xk=n 的方程解的组数
假设 y i = x i − a i + 1 y_i=x_i-a_i+1 yi=xi−ai+1,那么 y 1 + y 2 + y 3 + . . . + y k = n − ∑ 1 k a i + k = m y_1+y_2+y_3+...+y_k=n-\sum_{1}^{k}a_i+k=m y1+y2+y3+...+yk=n−∑1kai+k=m
因此就可以转换为求: C m − 1 k − 1 = C n − ∑ i = 1 k a i + k k − 1 C_{m-1}^{k-1}=C_{n-\sum_{i=1}^{k}a_i+k}^{k-1} Cm−1k−1=Cn−∑i=1kai+kk−1 的方案数
例题
方程的解 - 洛谷
- 首先求出 x x m o d 1000 x^x mod\space 1000 xxmod 1000 的值,作为 n n n
- 然后直接求对应的方案数: C n − 1 k − 1 C_{n-1}^{k-1} Cn−1k−1
- 对于如何处理这个组合数,我们使用求组合数的递推的方法,其中我们需要用到高精度加法来处理。
#include<bits/stdc++.h>
#if 1#define int long long
#endifconst int N=150,p=1000;
int n,k,x;
int dp[1001][101][N+10];
int qpow(int a,int b,int p){int ans=1;while (b){if (b&1){ans=ans*a%p;}a=a*a%p;b>>=1;}return ans;
}
void add(int ans[],int A[],int B[]){for (int i=0;i<=N;i++){ans[i]+=A[i]+B[i];ans[i+1]+=ans[i]/10;ans[i]%=10;}
}
void solve(int nn,int mm){//求组合数: C(1000,100)for (int i=0;i<=nn;i++){for (int j=0;j<=i && j<=mm;j++){if (j==0){dp[i][j][0]=1;}else{//高精度加法add(dp[i][j],dp[i-1][j],dp[i-1][j-1]);}}}
}
signed main(){std::cin>>k>>x;n=qpow(x,x,p);//a1+a2+a3...+ak=n//正整数解组数: 满足ai>=1solve(n-1,k-1);int i=N-1;//跳过前导0while (dp[n-1][k-1][i]==0){i--;}while (i>=0){std::cout<<dp[n-1][k-1][i--];}return 0;
}
相关文章:
隔板法(求解的组数)
文章目录 隔板法(求解的组数)隔板法扩展 例题 隔板法(求解的组数) 文章首发于我的个人博客:欢迎大佬们来逛逛 隔板法 隔板法能够解决的问题: 求线性不定方程的解的组数求相同元素分组的方案数 给我们 …...

智能文档处理黑科技,拥抱更高效的数字世界
目录 0 写在前面1 为何要关注智慧文档?2 图像弯曲矫正3 手写板反光擦除4 版面元素检测5 文档篡改检测总结 0 写在前面 近期,中国图象图形学学会文档图像分析与识别专业委员会与上海合合信息科技有限公司联合打造了《文档图像智能分析与处理》高峰论坛。…...

vue ts写法
Vue.js 和 TypeScript 结合使用可以让你的项目更加健壮和易于维护。在 Vue 3 中,你可以使用 Vue.js 的 Composition API 和 TypeScript 一起使用。以下是一个简单的 Vue.js 和 TypeScript 结合使用的例子: 首先,确保你已经安装了 Vue.js 和 T…...
Unity中的PostProcessBuild:深入解析与实用案例
Unity中的PostProcessBuild:深入解析与实用案例 在Unity游戏开发中,我们经常需要在构建完成后对生成的应用程序进行一些额外的处理。这时,我们可以使用Unity提供的PostProcessBuild功能。本文将详细介绍Unity中的PostProcessBuild方法&#…...

SimpleCG绘图函数(4)--绘制圆
在前一篇教程我们利用绘制矩形功能绘制了一个城市,接下来我们讲解另外一个同样重要且基础的图形----圆形。并一起看看该图形能绘制哪些应用呢。 绘制圆形相关函数如下: //圆心坐标(nXCenter,nYCenter),半径为nRatio//绘无填充制圆 void circle( int nXCenter, int …...
打包和优化
私人博客 许小墨のBlog —— 菜鸡博客直通车 系列文章完整版,配图更多,CSDN博文图片需要手动上传,因此文章配图较少,看不懂的可以去菜鸡博客参考一下配图! 系列文章目录 前端系列文章——传送门 后端系列文章——传送…...

linuxOPS基础_Linux文件管理
Linux下文件命名规则 可以使用哪些字符? 理论上除了字符“/”之外,所有的字符都可以使用,但是要注意,在目录名或文件名中,不建议使用某些特殊字符,例如, <、>、?、* 等&…...

C语言——数据在内存中的存储(上)
数据在内存中的存储 1. 数据类型的介绍 之前已经介绍过C语言中的基本数据类型了,主要有: char //字符数据类型short //短整型int //整形long //长整型long long //更长的整形float //单精度浮点数double //双精度浮点数 注意:C语言中是是没…...
LinkedIn 国际版怎么在国内登录?怎么使用领英国际版?
自从去年底国内用户使用LinkedIn就只能跳转到领英职场,而且就只是一个简单的招聘求职平台,没办法搜索添加国外客户,开发客户资源的效率大打折扣。但是国际版领英就不受影响,东哥今天就给各位做外贸的朋友分享如何使用国际版领英。…...
QThread Class
QThread QThread类枚举类型成员函数可重写函数公共槽信号静态成员函数保护函数静态保护函数QThread简单案例1QThread简单案例2 QThread类 标准头文件:#include <QThread> qmake: QT core 继承(父): QObject枚举类型 线程的优先级 enum Priority { IdlePri…...
C语言中的运算符及其优先级详解
引言: 在C语言中,运算符是用于进行各种数学和逻辑运算的符号。了解不同类型的运算符及其优先级对于正确理解和编写C语言代码至关重要。本文将详细介绍C语言中常用的运算符,包括算术运算符、赋值运算符、比较运算符、逻辑运算符等,…...

【C语言】语言篇——数组和字符串
C站的小伙伴们,大家好呀😝😝!我最近在阅读学习刘汝佳老师的《算法竞赛入门经典》,今天将整理本书的第三章——数组和字符串的一些习题,本章习题较多,下选取部分习题进行练习总结,在这…...
Js写的二级联动和三级联动
二级联动的实现 第一步 在HTML页面创建两个 select 下拉列表元素,并设置id为 ‘province’和id ‘city’ <!--省份--> <select id"province" onchange"getCity()"></select><!--城市--> <select id"city&qu…...

一文带你了解UI自动化测试框架
PythonSeleniumUnittestDdtHTMLReport分布式数据驱动自动化测试框架结构 1、Business:公共业务模块,如登录模块,可以把登录模块进行封装供调用 ------login_business.py from Page_Object.Common_Page.login_page import Login_Page from H…...

【Linux】守护进程
守护进程(Daemon)是一种在后台运行的特殊进程。它通常在操作系统启动时启动,并一直运行直至系统关闭。它不与任何终端关联,并且没有标准输入、输出和错误流。它的主要作用是在系统启动后执行一些特定的任务或者提供某些服务&#…...
Vue中组件和插件有什么区别?
Vue中组件和插件有什么区别? 组件是什么 组件就是把图形、非图形的各种逻辑均抽象为一个统一的概念(组件)来实现开发的模式,在Vue中每一个.vue文件都可以视为一个组件 组件的优势 降低整个系统的耦合度,在保持接口…...

第五章 图像处理
文章目录 前言一、图像金字塔1.高斯金字塔2.拉普拉斯金字塔 二、图像轮廓1. 轮廓提取2. 轮廓绘制3. 轮廓特征4. 轮廓近似5. 轮廓标记 三、模板匹配四、直方图1. 对比度2. 绘制直方图3. 均衡化3.1 理论3.2 代码 4. CLAHE 五、图像傅里叶变换5.1 正弦平面波5.2 二维傅里叶变换5.3…...

算法8.从暴力递归到动态规划1
算法|8.从暴力递归到动态规划1 目前感觉,背包问题和货币数组问题本质相同,货币的与dp相关的三种代码写完了,快复习不完了,背包暂时先不写了,回头再写,补充,再总结,结合那个C大神的文…...

8-JDBC 编程
目录 1.数据库编程的必备条件 PS:程序是怎么操作数据库的? 2.什么是JDBC? 2.1.JDBC定义 2.2.JDBC工作原理 3.JDBC使用 3.1.创建项目并添加MySQL驱动包 3.2.使用代码操作数据库 3.2.1.获得数据源 3.2.2.获得连接 3.2.3.获得执行器 …...

零基础如何学习 Web 安全?
Web安全不仅是互联网的核心,而且还是云计算和移动互联网的最佳载体。对于信息安全从业者而言,Web安全是一个非常重要的研究课题之一。 Web应用是指采用B/S架构、通过HTTP/HTTPS协议提供服务的统称。随着互联网的广泛使用,社交网络、聊天工具…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...