当前位置: 首页 > news >正文

克拉默法则证明(Cramer‘s Rule)

若 n 个方程 n 个未知量构成的非齐次线性方程组:

{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \begin{equation*} \begin{cases} a_{11}x_{1} + a_ {12}x_{2} + ... + a_{1n}x_{n} = b_1 \\ a_{21}x_{1} + a_ {22}x_{2} + ... + a_{2n}x_{n} = b_2 \\ ... ...\\ a_{n1}x_{1} + a_ {n2}x_{2} + ... + a_{nn}x_{n} = b_n \end{cases} \end{equation*} a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......an1x1+an2x2+...+annxn=bn

的系数行列式 ∣ A ∣ ≠ 0 |A| \neq 0 A=0,则方程组有唯一解,且

x i = ∣ A i ∣ ∣ A ∣ , i = 1 , 2 , . . . , n x_i = \frac{|A_i|}{|A|}, i = 1, 2, ..., n xi=AAi,i=1,2,...,n

其中 ∣ A i ∣ |A_i| Ai ∣ A ∣ |A| A 中的 i i i 列元素(即 x i x_i xi 的系数)替换成方程组右端的常数项 b 1 , b 2 , . . . , b n b_1, b2, ..., b_n b1,b2,...,bn 所构成的行列式。

证明:

使用 a 1 , . . . , a n a_1, ..., a_n a1,...,an 表示 A 的列,用 e 1 , . . . , e n e_1, ... , e_n e1,...,en 表示 n × n n\times n n×n的单位阵 I I I的列。由于有 A x = b Ax = b Ax=b,由矩阵乘法:
A ⋅ [ e 1 , . . . , x , . . . , e n ] = [ A e 1 , . . . , A x , . . . , A e n ] = [ a 1 , . . . , b , . . . , a n ] = A i \begin{align*} A\cdot [e_1, ..., x, ..., e_n] &= [Ae_1, ..., Ax, ..., Ae_n] \\ &= [\ \ a_1\ , ...\ , \ b\ \ , ..., a_n] \\ &= A_i \end{align*} A[e1,...,x,...,en]=[Ae1,...,Ax,...,Aen]=[  a1 ,... , b  ,...,an]=Ai
[ e 1 , . . . , x , . . . , e n ] [e_1, ..., x, ..., e_n] [e1,...,x,...,en] I i ( x ) I_i(x) Ii(x)

两边求行列式:

∣ A ∣ ⋅ ∣ I i ( x ) ∣ = ∣ A i ∣ |A|\cdot|I_i(x)| = |A_i | AIi(x)=Ai
其中: ∣ I i ( x ) ∣ = x i |I_i(x)| = x_i Ii(x)=xi

所以有: x i = ∣ A i ∣ ∣ A ∣ , ∣ A ∣ ≠ 0 x_i = \frac{|A_i|}{|A|},|A|\neq 0 xi=AAi,A=0,得证。

相关文章:

克拉默法则证明(Cramer‘s Rule)

若 n 个方程 n 个未知量构成的非齐次线性方程组: { a 11 x 1 a 12 x 2 . . . a 1 n x n b 1 a 21 x 1 a 22 x 2 . . . a 2 n x n b 2 . . . . . . a n 1 x 1 a n 2 x 2 . . . a n n x n b n \begin{equation*} \begin{cases} a_{11}x_{1} a_ {12}x_{2}…...

【接口防刷】处理方案

【接口防刷】 欢迎使用【接口防刷】常见的处理方案访问次数和频率限制验证码校验登录校验机制数据交互加密异常监测机制附录 欢迎使用【接口防刷】常见的处理方案 接口防刷处理方案是指为了防止恶意攻击或非法数据采集,采取一系列技术措施来保护接口数据的安全和完…...

安装Linux-SUSE操作系统

文章目录 一、安装Linux-SUSE系统1、环境准备2、SUSE 镜像的下载2.1、下载企业服务器2.2、ARM和桌面的ISO 3、安装SUSE4、配置本地 yum 源5、SUSE常用安装命令6、在 SUSE系统上安装mysql数据库步骤:7、破解SUSE系统root密码 一、安装Linux-SUSE系统 1、环境准备 操…...

二、机器人的结构设计

1 、螺丝连接的坚固性 坚固性是机器人能顺利完成指定任务的一个重要条件,无论我们程序设计的如何完美, 如果不能保证机器人具有坚固性和稳定性,就无法保证任务的顺利完成,机器人在运行时如 果发生散架和分裂都会影响其功能的实现…...

UITableView学习笔记

看TableView的资料其实已经蛮久了,一直想写点儿东西,却总是因为各种原因拖延,今天晚上有时间静下心来记录一些最近学习的TableView的知识。下面进入正题,UITableView堪称UIKit里面最复杂的一个控件了,使用起来不算难&a…...

Nginx反向代理与负载均衡

简介 Nginx 是一款高性能、轻量级的 Web 服务器软件,常用于反向代理和负载均衡。以下是 Nginx 反向代理和负载均衡的基本原理和实现方式 1、反向代理 当客户端请求访问一个 Web 服务器时,首先会发送请求到 Nginx,然后 Nginx 将请求转…...

Delaunay三角剖分学习笔记

文章目录 Delaunay三角剖分学习笔记1 Voronoi \text{Voronoi} Voronoi图1.1 定义与性质 2 三角剖分2.1 定义与性质2.2 质量(quality)评定标准 3 Delaunay三角剖分3.1 定义3.2 准则与性质 4 Delaunay三角剖分算法4.1 Bowyer-Watson算法4.1.1 算法步骤:4.1.2 算法伪代…...

@Resource和@Autowired的区别

1.相同点 Resource和Autowired这两个注解的作用都是在Spring生态里面去实现Bean的依赖注入 2.不同点 2.1 Autowired 首先,Autowired是Spring里面提供的一个注解,默认是根据类型来实现Bean的依赖注入。 Autowired注解里面有一个required属性默认值是t…...

linux达梦数据库的安装与卸载

一、安装 创建dmdba用户及用户组 创建安装目录: mkdir -p /dm8 创建组 :groupadd dinstall 创建用户 :useradd -g dinstall dmdba 设置密码 :passwd dmdba 创建文件夹:mkdir /dmdata 更改安装目录所有者: c…...

生成式模型的质量评估标准

Sample Quality Matrix 如何评价生成式模型的效果?ISFIDsFIDPrecision & RecallPrecisonRecall计算precision和recall 如何评价生成式模型的效果? Quality: 真实性(逼真,狗咬有四条腿) Diversity: 多样性&#x…...

pinpoint安装部署(相关博客合集)

pinpoint安装部署 说明一、PinPoint介绍及工作原理1.1 确定部署的组件及服务 二、相关组件版本兼容情况2.1 确定版本 三、部署3.1 HBASE3.2 agent 说明 本博客写在搭建PinPoint之前,主要是用来记录查阅的相关博客资料,等到动手搭建完再更新实际部署操作…...

python-匿名函数(lambda函数)

匿名函数(lambda函数) 匿名函数(也称为lambda函数)是一种在代码中定义临时函数的方式,它没有明确的函数名称。匿名函数通常用于需要简短、一次性的函数定义,特别是在处理函数作为参数传递或函数返回的情况…...

JS逆向常见情况

分类:JS压缩混淆加密 与 URL/API参数的加密 代码压缩:去除不必要的空格换行等内容,使源码变成几行,大大降低可读性并提升网站加载速度 代码混淆:使用变量替换、字符串阵列化、控制流平坦化、多态变异、僵尸函数…...

利用matlab对滤波器频率特性分析

【设计目标】对双二阶环路滤波器进行时频域分析和处理的基本方法 【设计工具】MATLAB【设计要求】 1)分析典型的双二阶环路滤波器电路:低通、高通、带通、带阻 2)理论分析各滤波电路的系统函数 3)利用Matlab分析各滤波电路的系统函数的频率特性(幅频、相频)、零极点分…...

对比 RS232,RS422,RS485

对比 RS232,RS422,RS485 首先, 串口、UART口、COM口、RJ45网口、USB口是指的物理接口形式(硬件)。TTL、RS-232、RS-485、RS-422是指的电平标准(电信号)。 RS232,RS422,RS485 对比表格 通信标准RS-232RS-422RS-485工作方式单端差分差分通信线数量4 地线52 地线3节…...

python使用requests+excel进行接口自动化测试(建议收藏)

前言 在当今的互联网时代中,接口自动化测试越来越成为软件测试的重要组成部分。Python是一种简单易学,高效且可扩展的语言,自然而然地成为了开发人员的首选开发语言。而requests和xlwt这两个常用的Python标准库,能够帮助我们轻松…...

华为OD机试真题 Java 实现【食堂供餐】【2023 B卷 考生抽中题】,附详细解题思路

一、题目描述 某公司员工食堂以盒饭的方式供餐。 为将员工取餐排队时间降为0,食堂的供餐速度必须要足够快。 现在需要根据以往员工取餐的统计信息,计算出一个刚好能达到排队时间为0的最低供餐速度。 即,食堂在每个单位时间内必须至少做出多少份盒饭才能满足要求。 二、…...

一分钟学一个 Linux 命令 - cd

前言 大家好,我是 god23bin。欢迎来到这个系列,每天只需一分钟,记住一个 Linux 命令不成问题。今天让我们从 cd 命令开始,掌握在 Linux 系统中切换目录的技巧。 什么是 cd 命令? cd 命令来自这么一个词语&#xff0…...

vi(vim)常用命令汇总

vim ~/.vimrc vim.vimrc 配置 set nobackup set cursorline #当前行 set cc100 #分屏线 set number set laststatus2 syntax on colorscheme delek 快速移动光标 w(e) 移动光标到下一个单词 b 移动光标到上一个单词 0 移动光标到本行最开头 ^ 移动光标到本行最开头的字符…...

模特信息管理系统的开发与实现(ASP.NET,SQLServer)

需求分析 模特信息管理系统主要给商家和模特用户提供服务,系统分为前台和后台两部分。 本研究课题重点主要包括:活动管理,商家管理,模特管理,系统公告管理和活动报名管理。 活动管理模块主要实现活动更新、活动添加、活…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

深度学习水论文:mamba+图像增强

🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...