当前位置: 首页 > news >正文

克拉默法则证明(Cramer‘s Rule)

若 n 个方程 n 个未知量构成的非齐次线性方程组:

{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \begin{equation*} \begin{cases} a_{11}x_{1} + a_ {12}x_{2} + ... + a_{1n}x_{n} = b_1 \\ a_{21}x_{1} + a_ {22}x_{2} + ... + a_{2n}x_{n} = b_2 \\ ... ...\\ a_{n1}x_{1} + a_ {n2}x_{2} + ... + a_{nn}x_{n} = b_n \end{cases} \end{equation*} a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......an1x1+an2x2+...+annxn=bn

的系数行列式 ∣ A ∣ ≠ 0 |A| \neq 0 A=0,则方程组有唯一解,且

x i = ∣ A i ∣ ∣ A ∣ , i = 1 , 2 , . . . , n x_i = \frac{|A_i|}{|A|}, i = 1, 2, ..., n xi=AAi,i=1,2,...,n

其中 ∣ A i ∣ |A_i| Ai ∣ A ∣ |A| A 中的 i i i 列元素(即 x i x_i xi 的系数)替换成方程组右端的常数项 b 1 , b 2 , . . . , b n b_1, b2, ..., b_n b1,b2,...,bn 所构成的行列式。

证明:

使用 a 1 , . . . , a n a_1, ..., a_n a1,...,an 表示 A 的列,用 e 1 , . . . , e n e_1, ... , e_n e1,...,en 表示 n × n n\times n n×n的单位阵 I I I的列。由于有 A x = b Ax = b Ax=b,由矩阵乘法:
A ⋅ [ e 1 , . . . , x , . . . , e n ] = [ A e 1 , . . . , A x , . . . , A e n ] = [ a 1 , . . . , b , . . . , a n ] = A i \begin{align*} A\cdot [e_1, ..., x, ..., e_n] &= [Ae_1, ..., Ax, ..., Ae_n] \\ &= [\ \ a_1\ , ...\ , \ b\ \ , ..., a_n] \\ &= A_i \end{align*} A[e1,...,x,...,en]=[Ae1,...,Ax,...,Aen]=[  a1 ,... , b  ,...,an]=Ai
[ e 1 , . . . , x , . . . , e n ] [e_1, ..., x, ..., e_n] [e1,...,x,...,en] I i ( x ) I_i(x) Ii(x)

两边求行列式:

∣ A ∣ ⋅ ∣ I i ( x ) ∣ = ∣ A i ∣ |A|\cdot|I_i(x)| = |A_i | AIi(x)=Ai
其中: ∣ I i ( x ) ∣ = x i |I_i(x)| = x_i Ii(x)=xi

所以有: x i = ∣ A i ∣ ∣ A ∣ , ∣ A ∣ ≠ 0 x_i = \frac{|A_i|}{|A|},|A|\neq 0 xi=AAi,A=0,得证。

相关文章:

克拉默法则证明(Cramer‘s Rule)

若 n 个方程 n 个未知量构成的非齐次线性方程组: { a 11 x 1 a 12 x 2 . . . a 1 n x n b 1 a 21 x 1 a 22 x 2 . . . a 2 n x n b 2 . . . . . . a n 1 x 1 a n 2 x 2 . . . a n n x n b n \begin{equation*} \begin{cases} a_{11}x_{1} a_ {12}x_{2}…...

【接口防刷】处理方案

【接口防刷】 欢迎使用【接口防刷】常见的处理方案访问次数和频率限制验证码校验登录校验机制数据交互加密异常监测机制附录 欢迎使用【接口防刷】常见的处理方案 接口防刷处理方案是指为了防止恶意攻击或非法数据采集,采取一系列技术措施来保护接口数据的安全和完…...

安装Linux-SUSE操作系统

文章目录 一、安装Linux-SUSE系统1、环境准备2、SUSE 镜像的下载2.1、下载企业服务器2.2、ARM和桌面的ISO 3、安装SUSE4、配置本地 yum 源5、SUSE常用安装命令6、在 SUSE系统上安装mysql数据库步骤:7、破解SUSE系统root密码 一、安装Linux-SUSE系统 1、环境准备 操…...

二、机器人的结构设计

1 、螺丝连接的坚固性 坚固性是机器人能顺利完成指定任务的一个重要条件,无论我们程序设计的如何完美, 如果不能保证机器人具有坚固性和稳定性,就无法保证任务的顺利完成,机器人在运行时如 果发生散架和分裂都会影响其功能的实现…...

UITableView学习笔记

看TableView的资料其实已经蛮久了,一直想写点儿东西,却总是因为各种原因拖延,今天晚上有时间静下心来记录一些最近学习的TableView的知识。下面进入正题,UITableView堪称UIKit里面最复杂的一个控件了,使用起来不算难&a…...

Nginx反向代理与负载均衡

简介 Nginx 是一款高性能、轻量级的 Web 服务器软件,常用于反向代理和负载均衡。以下是 Nginx 反向代理和负载均衡的基本原理和实现方式 1、反向代理 当客户端请求访问一个 Web 服务器时,首先会发送请求到 Nginx,然后 Nginx 将请求转…...

Delaunay三角剖分学习笔记

文章目录 Delaunay三角剖分学习笔记1 Voronoi \text{Voronoi} Voronoi图1.1 定义与性质 2 三角剖分2.1 定义与性质2.2 质量(quality)评定标准 3 Delaunay三角剖分3.1 定义3.2 准则与性质 4 Delaunay三角剖分算法4.1 Bowyer-Watson算法4.1.1 算法步骤:4.1.2 算法伪代…...

@Resource和@Autowired的区别

1.相同点 Resource和Autowired这两个注解的作用都是在Spring生态里面去实现Bean的依赖注入 2.不同点 2.1 Autowired 首先,Autowired是Spring里面提供的一个注解,默认是根据类型来实现Bean的依赖注入。 Autowired注解里面有一个required属性默认值是t…...

linux达梦数据库的安装与卸载

一、安装 创建dmdba用户及用户组 创建安装目录: mkdir -p /dm8 创建组 :groupadd dinstall 创建用户 :useradd -g dinstall dmdba 设置密码 :passwd dmdba 创建文件夹:mkdir /dmdata 更改安装目录所有者: c…...

生成式模型的质量评估标准

Sample Quality Matrix 如何评价生成式模型的效果?ISFIDsFIDPrecision & RecallPrecisonRecall计算precision和recall 如何评价生成式模型的效果? Quality: 真实性(逼真,狗咬有四条腿) Diversity: 多样性&#x…...

pinpoint安装部署(相关博客合集)

pinpoint安装部署 说明一、PinPoint介绍及工作原理1.1 确定部署的组件及服务 二、相关组件版本兼容情况2.1 确定版本 三、部署3.1 HBASE3.2 agent 说明 本博客写在搭建PinPoint之前,主要是用来记录查阅的相关博客资料,等到动手搭建完再更新实际部署操作…...

python-匿名函数(lambda函数)

匿名函数(lambda函数) 匿名函数(也称为lambda函数)是一种在代码中定义临时函数的方式,它没有明确的函数名称。匿名函数通常用于需要简短、一次性的函数定义,特别是在处理函数作为参数传递或函数返回的情况…...

JS逆向常见情况

分类:JS压缩混淆加密 与 URL/API参数的加密 代码压缩:去除不必要的空格换行等内容,使源码变成几行,大大降低可读性并提升网站加载速度 代码混淆:使用变量替换、字符串阵列化、控制流平坦化、多态变异、僵尸函数…...

利用matlab对滤波器频率特性分析

【设计目标】对双二阶环路滤波器进行时频域分析和处理的基本方法 【设计工具】MATLAB【设计要求】 1)分析典型的双二阶环路滤波器电路:低通、高通、带通、带阻 2)理论分析各滤波电路的系统函数 3)利用Matlab分析各滤波电路的系统函数的频率特性(幅频、相频)、零极点分…...

对比 RS232,RS422,RS485

对比 RS232,RS422,RS485 首先, 串口、UART口、COM口、RJ45网口、USB口是指的物理接口形式(硬件)。TTL、RS-232、RS-485、RS-422是指的电平标准(电信号)。 RS232,RS422,RS485 对比表格 通信标准RS-232RS-422RS-485工作方式单端差分差分通信线数量4 地线52 地线3节…...

python使用requests+excel进行接口自动化测试(建议收藏)

前言 在当今的互联网时代中,接口自动化测试越来越成为软件测试的重要组成部分。Python是一种简单易学,高效且可扩展的语言,自然而然地成为了开发人员的首选开发语言。而requests和xlwt这两个常用的Python标准库,能够帮助我们轻松…...

华为OD机试真题 Java 实现【食堂供餐】【2023 B卷 考生抽中题】,附详细解题思路

一、题目描述 某公司员工食堂以盒饭的方式供餐。 为将员工取餐排队时间降为0,食堂的供餐速度必须要足够快。 现在需要根据以往员工取餐的统计信息,计算出一个刚好能达到排队时间为0的最低供餐速度。 即,食堂在每个单位时间内必须至少做出多少份盒饭才能满足要求。 二、…...

一分钟学一个 Linux 命令 - cd

前言 大家好,我是 god23bin。欢迎来到这个系列,每天只需一分钟,记住一个 Linux 命令不成问题。今天让我们从 cd 命令开始,掌握在 Linux 系统中切换目录的技巧。 什么是 cd 命令? cd 命令来自这么一个词语&#xff0…...

vi(vim)常用命令汇总

vim ~/.vimrc vim.vimrc 配置 set nobackup set cursorline #当前行 set cc100 #分屏线 set number set laststatus2 syntax on colorscheme delek 快速移动光标 w(e) 移动光标到下一个单词 b 移动光标到上一个单词 0 移动光标到本行最开头 ^ 移动光标到本行最开头的字符…...

模特信息管理系统的开发与实现(ASP.NET,SQLServer)

需求分析 模特信息管理系统主要给商家和模特用户提供服务,系统分为前台和后台两部分。 本研究课题重点主要包括:活动管理,商家管理,模特管理,系统公告管理和活动报名管理。 活动管理模块主要实现活动更新、活动添加、活…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...