当前位置: 首页 > news >正文

克拉默法则证明(Cramer‘s Rule)

若 n 个方程 n 个未知量构成的非齐次线性方程组:

{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \begin{equation*} \begin{cases} a_{11}x_{1} + a_ {12}x_{2} + ... + a_{1n}x_{n} = b_1 \\ a_{21}x_{1} + a_ {22}x_{2} + ... + a_{2n}x_{n} = b_2 \\ ... ...\\ a_{n1}x_{1} + a_ {n2}x_{2} + ... + a_{nn}x_{n} = b_n \end{cases} \end{equation*} a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......an1x1+an2x2+...+annxn=bn

的系数行列式 ∣ A ∣ ≠ 0 |A| \neq 0 A=0,则方程组有唯一解,且

x i = ∣ A i ∣ ∣ A ∣ , i = 1 , 2 , . . . , n x_i = \frac{|A_i|}{|A|}, i = 1, 2, ..., n xi=AAi,i=1,2,...,n

其中 ∣ A i ∣ |A_i| Ai ∣ A ∣ |A| A 中的 i i i 列元素(即 x i x_i xi 的系数)替换成方程组右端的常数项 b 1 , b 2 , . . . , b n b_1, b2, ..., b_n b1,b2,...,bn 所构成的行列式。

证明:

使用 a 1 , . . . , a n a_1, ..., a_n a1,...,an 表示 A 的列,用 e 1 , . . . , e n e_1, ... , e_n e1,...,en 表示 n × n n\times n n×n的单位阵 I I I的列。由于有 A x = b Ax = b Ax=b,由矩阵乘法:
A ⋅ [ e 1 , . . . , x , . . . , e n ] = [ A e 1 , . . . , A x , . . . , A e n ] = [ a 1 , . . . , b , . . . , a n ] = A i \begin{align*} A\cdot [e_1, ..., x, ..., e_n] &= [Ae_1, ..., Ax, ..., Ae_n] \\ &= [\ \ a_1\ , ...\ , \ b\ \ , ..., a_n] \\ &= A_i \end{align*} A[e1,...,x,...,en]=[Ae1,...,Ax,...,Aen]=[  a1 ,... , b  ,...,an]=Ai
[ e 1 , . . . , x , . . . , e n ] [e_1, ..., x, ..., e_n] [e1,...,x,...,en] I i ( x ) I_i(x) Ii(x)

两边求行列式:

∣ A ∣ ⋅ ∣ I i ( x ) ∣ = ∣ A i ∣ |A|\cdot|I_i(x)| = |A_i | AIi(x)=Ai
其中: ∣ I i ( x ) ∣ = x i |I_i(x)| = x_i Ii(x)=xi

所以有: x i = ∣ A i ∣ ∣ A ∣ , ∣ A ∣ ≠ 0 x_i = \frac{|A_i|}{|A|},|A|\neq 0 xi=AAi,A=0,得证。

相关文章:

克拉默法则证明(Cramer‘s Rule)

若 n 个方程 n 个未知量构成的非齐次线性方程组: { a 11 x 1 a 12 x 2 . . . a 1 n x n b 1 a 21 x 1 a 22 x 2 . . . a 2 n x n b 2 . . . . . . a n 1 x 1 a n 2 x 2 . . . a n n x n b n \begin{equation*} \begin{cases} a_{11}x_{1} a_ {12}x_{2}…...

【接口防刷】处理方案

【接口防刷】 欢迎使用【接口防刷】常见的处理方案访问次数和频率限制验证码校验登录校验机制数据交互加密异常监测机制附录 欢迎使用【接口防刷】常见的处理方案 接口防刷处理方案是指为了防止恶意攻击或非法数据采集,采取一系列技术措施来保护接口数据的安全和完…...

安装Linux-SUSE操作系统

文章目录 一、安装Linux-SUSE系统1、环境准备2、SUSE 镜像的下载2.1、下载企业服务器2.2、ARM和桌面的ISO 3、安装SUSE4、配置本地 yum 源5、SUSE常用安装命令6、在 SUSE系统上安装mysql数据库步骤:7、破解SUSE系统root密码 一、安装Linux-SUSE系统 1、环境准备 操…...

二、机器人的结构设计

1 、螺丝连接的坚固性 坚固性是机器人能顺利完成指定任务的一个重要条件,无论我们程序设计的如何完美, 如果不能保证机器人具有坚固性和稳定性,就无法保证任务的顺利完成,机器人在运行时如 果发生散架和分裂都会影响其功能的实现…...

UITableView学习笔记

看TableView的资料其实已经蛮久了,一直想写点儿东西,却总是因为各种原因拖延,今天晚上有时间静下心来记录一些最近学习的TableView的知识。下面进入正题,UITableView堪称UIKit里面最复杂的一个控件了,使用起来不算难&a…...

Nginx反向代理与负载均衡

简介 Nginx 是一款高性能、轻量级的 Web 服务器软件,常用于反向代理和负载均衡。以下是 Nginx 反向代理和负载均衡的基本原理和实现方式 1、反向代理 当客户端请求访问一个 Web 服务器时,首先会发送请求到 Nginx,然后 Nginx 将请求转…...

Delaunay三角剖分学习笔记

文章目录 Delaunay三角剖分学习笔记1 Voronoi \text{Voronoi} Voronoi图1.1 定义与性质 2 三角剖分2.1 定义与性质2.2 质量(quality)评定标准 3 Delaunay三角剖分3.1 定义3.2 准则与性质 4 Delaunay三角剖分算法4.1 Bowyer-Watson算法4.1.1 算法步骤:4.1.2 算法伪代…...

@Resource和@Autowired的区别

1.相同点 Resource和Autowired这两个注解的作用都是在Spring生态里面去实现Bean的依赖注入 2.不同点 2.1 Autowired 首先,Autowired是Spring里面提供的一个注解,默认是根据类型来实现Bean的依赖注入。 Autowired注解里面有一个required属性默认值是t…...

linux达梦数据库的安装与卸载

一、安装 创建dmdba用户及用户组 创建安装目录: mkdir -p /dm8 创建组 :groupadd dinstall 创建用户 :useradd -g dinstall dmdba 设置密码 :passwd dmdba 创建文件夹:mkdir /dmdata 更改安装目录所有者: c…...

生成式模型的质量评估标准

Sample Quality Matrix 如何评价生成式模型的效果?ISFIDsFIDPrecision & RecallPrecisonRecall计算precision和recall 如何评价生成式模型的效果? Quality: 真实性(逼真,狗咬有四条腿) Diversity: 多样性&#x…...

pinpoint安装部署(相关博客合集)

pinpoint安装部署 说明一、PinPoint介绍及工作原理1.1 确定部署的组件及服务 二、相关组件版本兼容情况2.1 确定版本 三、部署3.1 HBASE3.2 agent 说明 本博客写在搭建PinPoint之前,主要是用来记录查阅的相关博客资料,等到动手搭建完再更新实际部署操作…...

python-匿名函数(lambda函数)

匿名函数(lambda函数) 匿名函数(也称为lambda函数)是一种在代码中定义临时函数的方式,它没有明确的函数名称。匿名函数通常用于需要简短、一次性的函数定义,特别是在处理函数作为参数传递或函数返回的情况…...

JS逆向常见情况

分类:JS压缩混淆加密 与 URL/API参数的加密 代码压缩:去除不必要的空格换行等内容,使源码变成几行,大大降低可读性并提升网站加载速度 代码混淆:使用变量替换、字符串阵列化、控制流平坦化、多态变异、僵尸函数…...

利用matlab对滤波器频率特性分析

【设计目标】对双二阶环路滤波器进行时频域分析和处理的基本方法 【设计工具】MATLAB【设计要求】 1)分析典型的双二阶环路滤波器电路:低通、高通、带通、带阻 2)理论分析各滤波电路的系统函数 3)利用Matlab分析各滤波电路的系统函数的频率特性(幅频、相频)、零极点分…...

对比 RS232,RS422,RS485

对比 RS232,RS422,RS485 首先, 串口、UART口、COM口、RJ45网口、USB口是指的物理接口形式(硬件)。TTL、RS-232、RS-485、RS-422是指的电平标准(电信号)。 RS232,RS422,RS485 对比表格 通信标准RS-232RS-422RS-485工作方式单端差分差分通信线数量4 地线52 地线3节…...

python使用requests+excel进行接口自动化测试(建议收藏)

前言 在当今的互联网时代中,接口自动化测试越来越成为软件测试的重要组成部分。Python是一种简单易学,高效且可扩展的语言,自然而然地成为了开发人员的首选开发语言。而requests和xlwt这两个常用的Python标准库,能够帮助我们轻松…...

华为OD机试真题 Java 实现【食堂供餐】【2023 B卷 考生抽中题】,附详细解题思路

一、题目描述 某公司员工食堂以盒饭的方式供餐。 为将员工取餐排队时间降为0,食堂的供餐速度必须要足够快。 现在需要根据以往员工取餐的统计信息,计算出一个刚好能达到排队时间为0的最低供餐速度。 即,食堂在每个单位时间内必须至少做出多少份盒饭才能满足要求。 二、…...

一分钟学一个 Linux 命令 - cd

前言 大家好,我是 god23bin。欢迎来到这个系列,每天只需一分钟,记住一个 Linux 命令不成问题。今天让我们从 cd 命令开始,掌握在 Linux 系统中切换目录的技巧。 什么是 cd 命令? cd 命令来自这么一个词语&#xff0…...

vi(vim)常用命令汇总

vim ~/.vimrc vim.vimrc 配置 set nobackup set cursorline #当前行 set cc100 #分屏线 set number set laststatus2 syntax on colorscheme delek 快速移动光标 w(e) 移动光标到下一个单词 b 移动光标到上一个单词 0 移动光标到本行最开头 ^ 移动光标到本行最开头的字符…...

模特信息管理系统的开发与实现(ASP.NET,SQLServer)

需求分析 模特信息管理系统主要给商家和模特用户提供服务,系统分为前台和后台两部分。 本研究课题重点主要包括:活动管理,商家管理,模特管理,系统公告管理和活动报名管理。 活动管理模块主要实现活动更新、活动添加、活…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

HTML 列表、表格、表单

1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...

网络编程(UDP编程)

思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...