当前位置: 首页 > news >正文

利用有限元法(FEM)模拟并通过机器学习进行预测以揭示增材制造过程中热场变化:基于ABAQUS和Python的研究实践

1. 引言

增材制造(Additive Manufacturing,AM)近年来引起了大量的研究关注,这主要是因为它可以提供定制化、复杂结构的零件制造解决方案。在AM过程中,热场的分布和变化直接影响了零件的质量和性能。对此,采用有限元法(FEM)进行模拟已经成为了一种广泛使用的方法。然而,由于AM过程的复杂性,对热场进行预测仍然存在很大的挑战。在本文中,我们将介绍一种通过机器学习预测热场的方法,并将其与FEM进行结合。我们将使用ABAQUS进行有限元模拟,并使用Python进行机器学习建模。

实战项目下载

2. 有限元法(FEM)模拟增材制造中的热场

有限元法是一种广泛应用于工程计算中的数值方法,它可以用于求解各种复杂的物理问题,如热传导、流体力学和结构力学等。在AM过程中,FEM常常被用来模拟热场的分布和变化。

首先,我们需要通过建立几何模型和设置边界条件来描述AM过程。然后,利用ABAQUS,我们可以将模型划分成许多的有限元,每一个元素都有自己的热物性参数,如导热系数和比热容等。然后,通过求解热传导方程,我们可以得到每个时间步长下的热场分布。

这里,我们以一个简单的例子来说明这个过程。我们的任务是模拟一个简单的金属板的加热过程。

from abaqus import *
from abaqusConstants import *# 创建模型
myModel = mdb.Model(name='HeatConduction')# 创建几何
mySketch = myModel.ConstrainedSketch(name='sketch', sheetSize=200.0)
mySketch.rectangle(point1=(0.0, 0.0), point2=(50.0, 50.0))
myPart = myModel.Part(name='plate', dimensionality=THREE_D, type=DEFORMABLE_BODY)
myPart.BaseShell(sketch=mySketch)# 定义材料和节面特性
myMaterial = myModel.Material(name='Material-1')
myMaterial.Elastic(table=((210000.0, 0.3), ))
myMaterial.Density(table=((7800.0, ), ))
myMaterial.Conductivity(table=((43.0, ), ))
myMaterial.SpecificHeat(table=((434.0, ), ))# 创建划分
myAssembly = myModel.rootAssembly
myInstance = myAssembly.Instance(name='plate-1', part=myPart, dependent=ON)
myAssembly.seedPartInstance(regions=(myInstance, ), size=10.0)
myAssembly.generateMesh(regions=(myInstance, ))# 创建步骤和载荷
myModel.HeatTransferStep(name='Step-1', previous='Initial', timePeriod=3600.0)
myModel.TemperatureBC(name='BC-1', createStepName='Step-1', region=myInstance.faces.findAt(((25.0, 25.0, 0.0), )),distributionType=UNIFORM, fieldName='', magnitude=500.0)# 创建求解器和作业
myJob = mdb.Job(name='Job-1', model='HeatConduction', description='Heat conduction simulation')
myJob.submit()
myJob.waitForCompletion()

以上代码首先定义了一个名为’HeatConduction’的模型,然后创建了一个50x50的正方形板,定义了板材的材料和热物性参数,如弹性模量、密度、导热系数和比热容。之后,进行了有限元划分,并定义了一个热传递步骤,在这个步骤中,板材被均匀加热到500摄氏度。最后,通过创建和提交一个求解作业来进行模拟。在求解完成后,我们可以得到加热过程中的热场分布。

以上部分是对有限元法(FEM)模拟增材制造中的热场进行的简单介绍,接下来的部分,我们将介绍如何使用机器学习进行热场预测。

注:以上示例代码应在ABAQUS的Python环境中运行,以确保正确导入ABAQUS的模块。

3. 机器学习预测热场

有限元模拟可以帮助我们理解和分析增材制造过程中的热场变化,然而在实际应用中,模拟的过程常常会非常耗时,且需要专业知识。此外,有限元模型的精度也受到初始和边界条件的影响。为了解决这些问题,我们可以尝试使用机器学习模型来预测热场。机器学习模型可以从大量的数据中学习规律,并进行快速的预测。

在本文中,我们选择使用Python的scikit-learn库来构建机器学习模型。我们将使用来自FEM模拟的数据作为训练数据,包括初始和边界条件,以及模拟结果(即热场分布)。

在这个例子中,我们将构建一个线性回归模型来预测热场。首先,我们需要获取模拟的数据:

import numpy as np
from abaqus import *# 创建会话并打开ODB
odb = session.openOdb(name='Job-1.odb')# 获取时间步长和元素温度
timeSteps = odb.steps['Step-1'].frames
numTimeSteps = len(timeSteps)# 初始化数据数组
temperatures = np.zeros((numTimeSteps, ))# 获取数据
for i in range(numTimeSteps):frame = timeSteps[i]field = frame.fieldOutputs['NT11']fieldValues = field.getSubset(region=odb.rootAssembly.instances['plate-1'].elements[0]).valuestemperatures[i] = fieldValues[0].data

以上代码打开了名为’Job-1.odb’的输出数据库(ODB),并获取了模拟的结果。之后,我们可以使用这些数据来训练机器学习模型:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression# 定义特征和目标变量
X = np.arange(numTimeSteps).reshape(-1, 1)  # 时间作为特征
y = temperatures  # 温度作为目标变量# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建和训练模型
model = LinearRegression()
model.fit(X_train, y_train)# 使用模型进行预测
y_pred = model.predict(X_test)

在以上的代码中,我们首先定义了特征(时间)和目标变量(温度)。然后,我们划分了训练集和测试集,之后我们创建了一个线性回归模型,并使用训练集进行训练。最后,我们使用训练好的模型来进行预测。

4. 结合有限元模拟和机器学习预测热场

虽然机器学习模型能够在一定程度上预测热场,但是,因为模型是基于训练数据来学习的,当遇到超出训练数据范围的新问题时,模型的预测性能可能会下降。此外,机器学习模型也不能像有限元模拟那样提供物理过程的详细信息。

因此,结合有限元模拟和机器学习进行热场预测就显得尤为重要。我们可以使用有限元模拟来生成训练数据,然后使用机器学习模型进行预测。当遇到新问题时,我们可以首先使用有限元模拟进行预测,然后将模拟的结果作为新的训练数据,以此来更新和优化机器学习模型。

以下是一个如何使用新的有限元模拟结果来更新机器学习模型的示例:

# 创建一个新的有限元模拟,并获取结果
# 略...# 新的模拟结果
new_temperatures = ...# 更新特征和目标变量
X_new = np.arange(numTimeSteps, numTimeSteps + len(new_temperatures)).reshape(-1, 1)
y_new = new_temperatures# 更新训练集
X_train = np.concatenate((X_train, X_new))
y_train = np.concatenate((y_train, y_new))# 重新训练模型
model.fit(X_train, y_train)

以上的代码首先获取了新的有限元模拟结果,然后将新的数据添加到训练集中,最后重新训练了模型。

5. 结论

总的来说,有限元模拟和机器学习各有优缺点,结合两者进行热场预测可以充分利用它们的优点,提高预测的精度和效率。尽管本文只介绍了一个简单的例子,但是这种方法可以广泛应用于增材制造中的各种复杂问题。希望这篇文章能为您提供一些启示,帮助您更好地理解和应用有限元模拟和机器学习在增材制造中的应用。

相关文章:

利用有限元法(FEM)模拟并通过机器学习进行预测以揭示增材制造过程中热场变化:基于ABAQUS和Python的研究实践

1. 引言 增材制造(Additive Manufacturing,AM)近年来引起了大量的研究关注,这主要是因为它可以提供定制化、复杂结构的零件制造解决方案。在AM过程中,热场的分布和变化直接影响了零件的质量和性能。对此,采…...

Kafka与Flume的对比分析

Kafka与Flume的对比分析 一、Kafka和Flume1. Kafka架构2. Flume架构3. Kafka和Flume异同点 二、Kafka和Flume的性能对比1. 数据处理性能对比2. 大规模数据流处理的性能对比 三、性和稳定性对比1. 高可用集群的搭建KafkaFlume 2. 数据丢失和重复消费的问题处理KafkaFlume 四、适…...

docker启动redis哨兵报错(sentinel.conf is not writable: Permission denied)

Sentinel config file /usr/local/sentinel/sentinel.conf is not writable: Permission denied. Exiting… 用这个命令不报错:docker run --net host -p 6666:6666–name redis-sentinel -v /usr/mcc/redis/conf:/usr/local/sentinel/ -v /usr/mcc/redis/data/sent…...

如何编写优秀代码

最近在阅读别人写的代码,进行相应功能的修改。发现很多不规范或者比较绕的地方,总有那么几句看着多此一举,阅读别人的代码就是这样,有时候真的不懂写代码的人当时怎么想的。 例如有这么一段: 用户输入一个名字&#…...

信道编码:Matlab RS编码、译码使用方法

Matlab RS编码、译码使用方法 1. 相关函数 在MATLAB中进行RS编码的过程可以使用rsenc()函数或者comm.RSEncoder()函数。 1.1 rsenc()函数使用方法 在MATLAB中帮助中可以看到有三种使用形式,分别为 code rsenc(msg,n,k) code rsenc(msg,n,k,genpoly) code rs…...

数据结构第六章 图 6.1-6.3 错题整理

6.1 6.C 加上一个点实现非连通 去除每个边都是一颗不同的生成树 一共n条边 13.C n个顶点、e条边的无向图,森林。树的角度看,除了根节点没有一条边与其对应,其他顶点都对应一条边,用顶点-边得出有多少颗树 14.A II 等于 也可以…...

12 MFC常用控件(一)

文章目录 button 按钮设置默认按钮按下回车后会响应禁用开启禁用设置隐藏设置显示设置图片设置Icon设置光标 Cbutton 类创建按钮创建消息单选按钮多选按钮 编辑框组合框下拉框操作 CListBox插入数据获取当前选中 CListCtrl插入数据设置表头修改删除 button 按钮 设置默认按钮按…...

Springboot搭配Redis实现接口限流

目录 介绍 限流的思路 代码示例 必需pom依赖 自定义注解 redis工具类 redis配置类 主拦截器 注册拦截器 介绍 限流的需求出现在许多常见的场景中: 秒杀活动,有人使用软件恶意刷单抢货,需要限流防止机器参与活动 某 api 被各式各样…...

php中的双引号与单引号的基本使用

字符串,在各类编程语言中都是一个非常重要的数据类型 网页当中的图片,文字,特殊符号,HTMl标签,英文等都属于字符串 PHP字符串变量用于存储并处理文本, 在创建字符串之后,我们就可以对它进行操作。我们可以直接在函数中使用字符串,或者把它存储在变量中 字…...

【Neo4j教程之CQL命令基本使用】

🚀 Neo4j 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,C…...

Apikit 自学日记:发起文档测试-TCP/UDP

进入某个TCP/UDP协议的API文档详情页,点击文档上方 测试 标签,即可进入 API 测试页,系统会根据API文档的定义的求头部、Query参数、请求体自动生成测试界面并且填充测试数据。 填写/修改请求参数 1.1设置请求参数 与发起HTTP协议测试类似&am…...

坚鹏:中国邮储银行金融科技前沿技术发展与应用场景第1期培训

中国邮政储蓄银行金融科技前沿技术发展与应用场景第1期培训圆满结束 中国邮政储蓄银行拥有优良的资产质量和显著的成长潜力,是中国领先的大型零售银行。2016年9月在香港联交所挂牌上市,2019年12月在上交所挂牌上市。中国邮政储蓄银行拥有近4万个营业网点…...

HBase分布式安装配置

首先 先安装zookeeper ZooKeeper配置 解压安装 解压 tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz -C /opt 改名 mv apache-zookeeper-3.5.7-bin zookeeper-3.5.7 在根目录下创建两个文件夹 mkdir Zlogs mkdir Zdata配置zoo.cfg文件,在解压后的ZooKeep…...

Microsoft365有用吗?2023最新版office有哪些新功能?

office自97版到现在已有20多年,一直是作为行业标准,格式和兼容性好,比较正式,适合商务使用。包含多个组件,除了常用的word、excel、ppt外,还有收发邮件的outlook、管理数据库的access、排版桌面的publisher…...

结构体的定义与实例化

结构体的定义与实例化 在Go语言中,结构体是一种用户自定义的数据类型(复合类型,而非引用类型),可以用来封装多个不同类型的数据成员。结构体的定义和实例化分别如下: 结构体的定义 结构体的定义使用关键…...

canvas详解03-绘制图像和视频

canvas 更有意思的一项特性就是图像操作能力。可以用于动态的图像合成或者作为图形的背景,以及游戏界面(Sprites)等等。浏览器支持的任意格式的外部图片都可以使用,比如 PNG、GIF 或者 JPEG。你甚至可以将同一个页面中其他 canvas 元素生成的图片作为图片源。 引入图像到 …...

VB+ACCESS高校题库管理系统设计与实现

开发数据库题库管理系统主要是为了建立一个统一的题库,并对其用计算机进行管理,使教师出题高效、快捷。 其开发主要包括后台数据库的建立、维护以及前端应用程序的开发两个方面。对于前者要求建立起数据一致性和完整性强、数据安全性好的库。而对于后者则要求应用程序功能完…...

centos 安装 nginx

1.下载nginx安装包 wget -c https://nginx.org/download/nginx-1.24.0.tar.gz 下载到了当前目录下 2.解压安装包 解压后的结果 3.安装依赖 yum -y install gcc gcc-c make libtool zlib zlib-devel openssl openssl-devel pcre pcre-devel 4. ./configure --prefix/usr/lo…...

TCP/IP详解(一)

TCP/IP协议是Internet互联网最基本的协议,其在一定程度上参考了七层OSI(Open System Interconnect,即开放式系统互联)模型 OSI参考模型是国际组织ISO在1985年发布的网络互联模型,目的是为了让所有公司使用统一的规范来…...

three.js的学习

Threejs 1 前言 Three.js是基于原生WebGL封装运行的三维引擎,在所有WebGL引擎中,Three.js是国内文资料最多、使用最广泛的三维引擎。 既然Threejs是一款WebGL三维引擎,那么它可以用来做什么想必你一定很关心。所以接下来内容会展示大量基于…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】,这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...

C# winform教程(二)----checkbox

一、作用 提供一个用户选择或者不选的状态,这是一个可以多选的控件。 二、属性 其实功能大差不差,除了特殊的几个外,与button基本相同,所有说几个独有的 checkbox属性 名称内容含义appearance控件外观可以变成按钮形状checkali…...

【笔记】AI Agent 项目 SUNA 部署 之 Docker 构建记录

#工作记录 构建过程记录 Microsoft Windows [Version 10.0.27871.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗ ██╗███╗ ██╗ █████╗ ██╔════╝…...