【机器学习】了解 AUC - ROC 曲线
一、说明
在机器学习中,性能测量是一项基本任务。因此,当涉及到分类问题时,我们可以依靠AUC - ROC曲线。当我们需要检查或可视化多类分类问题的性能时,我们使用AUC(曲线下面积)ROC(接收器工作特性)曲线。它是检查任何分类模型性能的最重要评估指标之一。
本博客旨在回答以下问题:
- 1. 什么是 AUC - ROC 曲线?
- 2. 定义 AUC 和 ROC 曲线中使用的术语。
- 3. 如何推测模型的性能?
- 4. 敏感性、特异性、FPR 和阈值之间的关系。
- 5. 如何在多类模型中使用 AUC - ROC 曲线?
二、什么是 AUC - ROC 曲线?
AUC - ROC 曲线是各种阈值设置下分类问题的性能度量。ROC 是一条概率曲线,AUC 表示可分离性的程度或度量。它告诉模型能够区分类的程度。AUC 越高,模型在将 0 个类预测为 0 和将 1 个类预测为 1 方面越好。以此类推,AUC越高,模型在区分有疾病和无疾病患者方面就越好。
ROC 曲线使用 TPR 与 FPR 绘制,其中 TPR 在 y 轴上,FPR 在 x 轴上。

三、定义 AUC 和 ROC 曲线中使用的术语。
3.1 TPR(真阳性率)/召回率/灵敏度
3.2 特异性
3.3 FPR
四、如何推测模型的性能?
优秀的模型的 AUC 接近 1,这意味着它具有良好的可分离性。较差的模型的 AUC 接近 0,这意味着它的可分离性度量最差。事实上,这意味着它正在回报结果。它将 0 预测为 1,将 1 预测为 0。当 AUC 为 0.5 时,意味着模型没有任何类别分离能力。 我们来解读一下上面的说法。 众所周知,ROC是一条概率曲线。那么让我们绘制这些概率的分布: 注:红色分布曲线为正类(患病患者),绿色分布曲线为负类(无疾病患者)。
这是一个理想的情况。当两条曲线完全不重叠时,意味着模型具有理想的可分离性度量。它完全能够区分正类和负类。
当两个分布重叠时,我们引入类型 1 和类型 2 错误。根据阈值,我们可以最小化或最大化它们。当 AUC 为 0.7 时,这意味着模型有 70% 的机会能够区分正类和负类。
这是最糟糕的情况。当AUC约为0.5时,模型没有区分正类和负类的判别能力。
当 AUC 大约为 0 时,模型实际上是在往复类。这意味着模型将负类预测为正类,反之亦然。
五、灵敏度、特异性、FPR 和阈值之间的关系。
敏感性和特异性成反比。因此,当我们增加灵敏度时,特异性会降低,反之亦然。
敏感性,特异性和敏感性⬆️⬇️,特异性⬇️⬆️
当我们降低阈值时,我们得到更多的正值,从而增加敏感性并降低特异性。
同样,当我们增加阈值时,我们会得到更多的负值,从而获得更高的特异性和更低的灵敏度。
众所周知,FPR 是 1 - 特异性。因此,当我们增加TPR时,FPR也会增加,反之亦然。
TPR,FPR和TPR,FPR⬆️⬆️⬇️⬇️
六、如何在多类模型中使用 AUC ROC 曲线?
在多类模型中,我们可以使用 One vs ALL 方法绘制 N 个类的 N 个 AUC ROC 曲线。例如,如果您有名为 X、Y 和 Z 的三个类,则将有一个针对 Y 和 Z 分类的 X 的 ROC,另一个针对 Y 分类的 Y 的 ROC,以及针对 Y 和 X 分类的第三个 Z。
相关文章:

【机器学习】了解 AUC - ROC 曲线
一、说明 在机器学习中,性能测量是一项基本任务。因此,当涉及到分类问题时,我们可以依靠AUC - ROC曲线。当我们需要检查或可视化多类分类问题的性能时,我们使用AUC(曲线下面积)ROC(接收器工作特…...

Docker 容器生命周期:创建、启动、暂停与停止----从创建到停止多角度分析
🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~ἳ…...

C++STL库中的vector
文章目录 vector的介绍及使用 vector深度剖析及模拟实现 动态二维数组理解 一、vector的介绍及使用 1.vector的介绍 1. vector是表示可变大小数组的序列容器。 2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进…...

PHP 药店管理系统mysql数据库web结构apache计算机软件工程网页wamp
一、源码特点 PHP 药品管理系统 是一套完善的web设计系统,系统采用smarty框架进行开发设计,对理解php编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 PHP 药店管理系统mysql数据库web结构apache计 下载地址…...

【多选框、表格全选】element el-checkbox、el-table
话不多说 先看效果: 多选框: 表格全选: <template><div><div class"titleLabel"><div class"lineStyle"></div>统计部门</div><div style"display: flex"><e…...
【Java】微服务负载均衡算法实现
前言 本篇实现一下分布式中负载均衡的实现策略,以及负载均衡算法是如何实现的。 什么是负载均衡? Java负载均衡是指在多台服务器之间分配负载,以提高服务器的性能和可用性。它通过将请求分发到多台服务器来减少单个服务器的压力࿰…...
分类、回归常用损失函数
分类: 交叉熵损失函数(Cross-entropy loss function) KL散度、交叉熵损失函数、nn.CrossEntropyLoss()_HealthScience的博客-CSDN博客 权重交叉熵损失函数(Weighted cross-entropy loss function) BCEWithLogitsLo…...
SaaS到底是什么,如何做?这份笔记讲明白了
阅读本篇文章,您将可以了解:1、什么是SaaS;2、SaaS的商业模式;3、SaaS的技术架构;4、国内比较好的SaaS平台。 一、什么是SaaS SaaS即软件即服务(Software as a Service),是一种通过…...

Python 单继承、多继承、@property、异常、文件操作、线程与进程、进程间通信、TCP框架 7.24
单继承 class luban:def __init__(self, name):self.name nameself.skill "摸鱼飞弹"self.damageLevel 20def attack(self):print("{} 使用了技能{} ,给敌方带来了极大的困扰\n""并有{}% 的机会造成一击必杀的效果".format(self.…...

【英杰送书第三期】Spring 解决依赖版本不一致报错 | 文末送书
Yan-英杰的主 悟已往之不谏 知来者之可追 C程序员,2024届电子信息研究生 目录 问题描述 报错信息如下 报错描述 解决方法 总结 【粉丝福利】 【文末送书】 目录: 本书特色: 问题描述 报错信息如下 Description:An attempt…...
ClickHouse修改和删除操作
文章目录 ClickHouse介绍为什么不推荐更新和删除如何实现更新操作如何实现删除操作官方文档 ClickHouse介绍 ClickHouse是由俄罗斯的Yandex公司开发的一款快速、可扩展的列式数据库管理系统。它专门针对OLAP场景设计,在海量数据分析和查询方面具有出色的性能表现&a…...

比selenium体验更好的ui自动化测试工具: cypress介绍
话说 Cypress is a next generation front end testing tool built for the modern web. And Cypress can test anything that runs in a browser.Cypress consists of a free, open source, locally installed Test Runner and a Dashboard Service for recording your tests.…...

Python编译过程和执行原理
hello,这里是Token_w的文章,主要讲解python的基础学习,希望对大家有所帮助 整理不易,感觉还不错的可以点赞收藏评论支持,感谢! 目录 一. Python执行原理二. Python内部执行过程2.1 编译过程概述2.2 过程图解…...

opencv 图像距离变换 distanceTransform
图像距离变换:计算图像中每一个非零点距离离自己最近的零点的距离,然后通过二值化0与非0绘制图像。 #include "iostream" #include "opencv2/opencv.hpp" using namespace std; using namespace cv;int main() {Mat img, dst, dst…...

消息队列——rabbitmq的不同工作模式
目录 Work queues 工作队列模式 Pub/Sub 订阅模式 Routing路由模式 Topics通配符模式 工作模式总结 Work queues 工作队列模式 C1和C2属于竞争关系,一个消息只有一个消费者可以取到。 代码部分只需要用两个消费者进程监听同一个队里即可。 两个消费者呈现竞争关…...

QT实现用户登录注册功能
本文实例为大家分享了QT实现用户登录注册的具体代码,供大家参考,具体内容如下 1、login.h ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 #ifndef LOGIN_H #define LOGIN_H #include <QWidget> namespace Ui { c…...

Docker--harbor私有仓库部署与管理
目录 一、构建私有库 1.下载 registry 镜像 2.在 daemon.json 文件中添加私有镜像仓库地址 3.运行 registry 容器 4.为镜像打标签 5.上传到私有仓库 6.列出私有仓库的所有镜像 7.列出私有仓库的centos镜像有哪些tag 8.测试私有仓库下载 二、Harbor 简介 1.什么是Harb…...
idea复制一份web服务在不同端口启动
Idea 运行多个微服务 Idea 一个服务开启多个端口运行 idea 开启多个端口服务_idea开启多个服务_HaHa_Sir的博客-CSDN博客 IntelliJ IDEA 中一个服务按多个端口同时启动与显示Services面板_一个服务多个端口_Touch&的博客-CSDN博客 Idea中一个服务按多个端口同时启动_idea…...

CRM系统化整合从N-1做减法实践 | 京东物流技术团队
1 背景 京销易系统已经接入大网、KA以及云仓三个条线商机,每个条线商机规则差异比较大,当前现状是独立实现三套系统分别做支撑。 2 目标 2022年下半年CRM目标是完成9个新条线业务接入,完成销售过程线上化,实现销售规则统一。 …...

STM32CUBUMX配置RS485(中断接收)--保姆级教程
———————————————————————————————————— ⏩ 大家好哇!我是小光,嵌入式爱好者,一个想要成为系统架构师的大三学生。 ⏩最近在开发一个STM32H723ZGT6的板子,使用STM32CUBEMX做了很多驱动&#x…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...
标注工具核心架构分析——主窗口的图像显示
🏗️ 标注工具核心架构分析 📋 系统概述 主要有两个核心类,采用经典的 Scene-View 架构模式: 🎯 核心类结构 1. AnnotationScene (QGraphicsScene子类) 主要负责标注场景的管理和交互 🔧 关键函数&…...
第6章:Neo4j数据导入与导出
在实际应用中,数据的导入与导出是使用Neo4j的重要环节。无论是初始数据加载、系统迁移还是数据备份,都需要高效可靠的数据传输机制。本章将详细介绍Neo4j中的各种数据导入与导出方法,帮助读者掌握不同场景下的最佳实践。 6.1 数据导入策略 …...