当前位置: 首页 > news >正文

【Python入门系列】第十八篇:Python自然语言处理和文本挖掘

文章目录

  • 前言
  • 一、Python常用的NLP和文本挖掘库
  • 二、Python自然语言处理和文本挖掘
    • 1、文本预处理和词频统计
    • 2、文本分类
    • 3、命名实体识别
    • 4、情感分析
    • 5、词性标注
    • 6、文本相似度计算
  • 总结


前言

Python自然语言处理(Natural Language Processing,简称NLP)和文本挖掘是一门涉及处理和分析人类语言的学科。它结合了计算机科学、人工智能和语言学的知识,旨在使计算机能够理解、解释和生成人类语言。

一、Python常用的NLP和文本挖掘库

  1. NLTK(Natural Language Toolkit):它是Python中最受欢迎的NLP库之一,提供了丰富的文本处理和分析功能,包括分词、词性标注、句法分析和语义分析等。

  2. spaCy:这是一个高效的NLP库,具有快速的分词和实体识别功能。它还提供了预训练的模型,可用于执行各种NLP任务。

  3. Gensim:这是一个用于主题建模和文本相似度计算的库。它提供了一种简单而灵活的方式来处理大规模文本数据,并从中提取有用的信息。

  4. Scikit-learn:虽然它是一个通用的机器学习库,但也提供了一些用于文本分类、情感分析和文本聚类等NLP任务的工具。

二、Python自然语言处理和文本挖掘

1、文本预处理和词频统计

import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from collections import Counter# 定义文本数据
text = "自然语言处理是一门涉及处理和分析人类语言的学科。它结合了计算机科学、人工智能和语言学的知识。"# 分词
tokens = word_tokenize(text)# 去除停用词
stop_words = set(stopwords.words("chinese"))
filtered_tokens = [word for word in tokens if word.casefold() not in stop_words]# 统计词频
word_freq = Counter(filtered_tokens)# 打印结果
for word, freq in word_freq.items():print(f"{word}: {freq}")

结果:

在这里插入图片描述

这个示例展示了如何使用NLTK库进行文本预处理,包括分词和去除停用词。然后,使用Counter类计算词频,并打印结果。

2、文本分类

import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC# 定义文本数据和标签
texts = ["这是一个正面的评论", "这是一个负面的评论", "这是一个中性的评论"]
labels = [1, -1, 0]# 分词和去除停用词
tokens = [word_tokenize(text) for text in texts]
stop_words = set(stopwords.words("chinese"))
filtered_tokens = [[word for word in token if word.casefold() not in stop_words] for token in tokens]# 特征提取
vectorizer = TfidfVectorizer()
features = vectorizer.fit_transform([" ".join(token) for token in filtered_tokens])# 模型训练和预测
model = SVC()
model.fit(features, labels)
test_text = "这是一个中性的评论"
test_token = [word for word in word_tokenize(test_text) if word.casefold() not in stop_words]
test_feature = vectorizer.transform([" ".join(test_token)])
predicted_label = model.predict(test_feature)# 输出结果
print(f"测试文本: {test_text}")
print(f"预测标签: {predicted_label}")

输出结果:
在这里插入图片描述

这个案例演示了如何使用机器学习模型进行文本分类。首先,将文本数据分词并去除停用词。然后,使用TF-IDF向量化器提取文本特征。接下来,使用支持向量机(SVM)模型进行训练,并预测新的文本标签。在这个案例中,测试文本被预测为中性评论。

3、命名实体识别

import nltk
from nltk.tokenize import word_tokenize
from nltk import ne_chunk# 定义文本数据
text = "巴黎是法国的首都,埃菲尔铁塔是巴黎的标志性建筑。"# 分词和命名实体识别
tokens = word_tokenize(text)
tagged_tokens = nltk.pos_tag(tokens)
entities = ne_chunk(tagged_tokens)# 输出结果
print(entities)

结果:
在这里插入图片描述

这个案例展示了如何使用命名实体识别(NER)来识别文本中的人名、地名、组织名等实体。首先,对文本进行分词和词性标注。然后,使用ne_chunk函数对标注的结果进行命名实体识别。在这个案例中,巴黎和法国被识别为地名,埃菲尔铁塔被识别为组织名。

4、情感分析

import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC# 定义文本数据和标签
texts = ["这部电影太棒了!", "这个产品质量很差。", "服务态度非常好。"]
labels = [1, -1, 1]# 分词和去除停用词
tokens = [word_tokenize(text) for text in texts]
stop_words = set(stopwords.words("chinese"))
filtered_tokens = [[word for word in token if word.casefold() not in stop_words] for token in tokens]# 特征提取
vectorizer = TfidfVectorizer()
features = vectorizer.fit_transform([" ".join(token) for token in filtered_tokens])# 模型训练和预测
model = SVC()
model.fit(features, labels)
test_text = "这部电影非常好看!"
test_token = [word for word in word_tokenize(test_text) if word.casefold() not in stop_words]
test_feature = vectorizer.transform([" ".join(test_token)])
predicted_label = model.predict(test_feature)# 输出结果
print(f"测试文本: {test_text}")
print(f"预测标签: {predicted_label}")

结果:

在这里插入图片描述

这个案例展示了如何使用机器学习模型进行情感分析。首先,将文本数据分词并去除停用词。然后,使用TF-IDF向量化器提取文本特征。接下来,使用支持向量机(SVM)模型进行训练,并预测新的文本情感标签。在这个案例中,测试文本被预测为正面情感。

5、词性标注

import nltk
from nltk.tokenize import word_tokenize# 定义文本数据
text = "我喜欢吃水果。"# 分词和词性标注
tokens = word_tokenize(text)
tagged_tokens = nltk.pos_tag(tokens)# 输出结果
for token, tag in tagged_tokens:print(f"{token}: {tag}")

结果:

在这里插入图片描述

6、文本相似度计算

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similaritydocuments = ["This is the first document","This document is the second document","And this is the third one"]tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)
print(similarity_matrix)

结果:
在这里插入图片描述

这个案例使用了sklearn库,计算文本之间的相似度。首先,使用TfidfVectorizer将文本转换为TF-IDF特征向量表示。然后,使用cosine_similarity方法计算TF-IDF矩阵的余弦相似度,得到相似度矩阵。

总结

总之,Python自然语言处理和文本挖掘是一种利用Python编程语言进行处理和分析文本数据的技术。它结合了自然语言处理和机器学习技术,可以用于从文本中提取有用的信息、进行情感分析、词性标注、命名实体识别等任务。Python自然语言处理和文本挖掘技术在许多领域都有广泛的应用,包括社交媒体分析、舆情监测、智能客服、信息抽取和机器翻译等。它为我们处理和分析大规模的文本数据提供了强大的工具和方法。

相关文章:

【Python入门系列】第十八篇:Python自然语言处理和文本挖掘

文章目录 前言一、Python常用的NLP和文本挖掘库二、Python自然语言处理和文本挖掘1、文本预处理和词频统计2、文本分类3、命名实体识别4、情感分析5、词性标注6、文本相似度计算 总结 前言 Python自然语言处理(Natural Language Processing,简称NLP&…...

【GD32F103】自定义程序库08-DMA+ADC

DMA 自定义函数库说明: 将DMA先关的变量方式在一个机构体中封装起来,主要参数有 dma外设,时钟,通道,外设寄存器地址,数据传输宽度,数据方向,外设是能dma传输使能回调函数,扫描模式中断编号dma中断使能传输完成标志数据存储空间使用一个枚举类型指明每个DMA绑定到那个…...

集成了Eureka的应用启动失败,端口号变为8080

问题 报错:集成了Eureka的应用启动失败,端口号变为8080。 原来运行的项目,突然报错,端口号变为8080: Tomcat initialized with port(s): 8080 (http)并且,还有如下的错误提示: RedirectingE…...

CMU 15-445 -- Timestamp Ordering Concurrency Control - 15

CMU 15-445 -- Timestamp Ordering Concurrency Control - 15 引言Basic T/OBasic T/O ReadsBasic T/O WritesBasic T/O - Example #1Basic T/O - Example #2 Basic T/O SummaryRecoverable Schedules Optimistic Concurrency Control (OCC)OCC - ExampleSERIAL VALIDATIONOCC …...

MURF2080CT/MURF2080CTR-ASEMI快恢复对管

编辑:ll MURF2080CT/MURF2080CTR-ASEMI快恢复对管 型号:MURF2080CT/MURF2080CTR 品牌:ASEMI 芯片个数:2 芯片尺寸:102MIL*2 封装:TO-220F 恢复时间:50ns 工作温度:-50C~150C…...

去除 idea warn Raw use of parameterized class ‘Map‘

去除 idea warn Raw use of parameterized class ‘Map’ 文档:Raw use of parameterized class ‘Map’… 链接:http://note.youdao.com/noteshare?id99bf4003db8cc5ae9813ee11e58c4d13&sub5856371AEFA740AF8FA4D8935B4F6912 添加链接描述 public…...

使用BERT分类的可解释性探索

最近尝试了使用BERT将告警信息当成一个文本去做分类,从分类的准召率上来看,还是取得了不错的效果(非结构化数据强标签训练,BERT确实是一把大杀器)。但准召率并不是唯一追求的目标,在安全场景下,…...

web APIs-练习二

轮播图点击切换&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" content"…...

rpc通信原理浅析

rpc通信原理浅析 rpc(remote procedure call)&#xff0c;即远程过程调用&#xff0c;广泛用于分布式或是异构环境下的通信&#xff0c;数据格式一般采取protobuf。 protobuf&#xff08;protocol buffer&#xff09;是google 的一种数据交换的格式&#xff0c;它独立于平台语…...

【机器学习】分类算法 - KNN算法(K-近邻算法)KNeighborsClassifier

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;零基础快速入门人工智能《机器学习入门到精通》 K-近邻算法 1、什么是K-近邻算法&#xff1f;2、K-近邻算法API3、…...

Spring Security 6.x 系列【64】扩展篇之多线程支持

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列Spring Security 版本 6.1.0 本系列Spring Authorization Server 版本 1.1.0 源码地址:https://gitee.com/pearl-organization/study-spring-security-demo 文章目录 1. 问题演示2. 解决方案:…...

Elasticsearch 简单搜索查询案例

1.MySql表结构/数据 SET FOREIGN_KEY_CHECKS0;-- ---------------------------- -- Table structure for user_lables -- ---------------------------- DROP TABLE IF EXISTS user_lables; CREATE TABLE user_lables (id varchar(255) DEFAULT NULL COMMENT 用户唯一标识,age…...

【RabbitMQ(day1)】RabbitMQ的概述和安装

入门RabbitMQ 一、RabbitMQ的概述二、RabbitMQ的安装三、RabbitMQ管理命令行四、RabbitMQ的GUI界面 一、RabbitMQ的概述 MQ&#xff08;Message Queue&#xff09;翻译为消息队列&#xff0c;通过典型的【生产者】和【消费者】模型&#xff0c;生产者不断向消息队列中生产消息&…...

Too many files with unapproved license: 2 See RAT report

解决方案 mvn -Prelease-nacos -Dmaven.test.skiptrue -Dpmd.skiptrue -Dcheckstyle.skiptrue -Drat.numUnapprovedLicenses100 clean install 或者 mvn -Prelease-nacos -Dmaven.test.skiptrue -Drat.numUnapprovedLicenses100 clean install...

Windows11的VTK安装:VS201x+Qt5/Qt6 +VTK7.1/VTK9.2.6

需要提前安装好VS2017和VS2019和Qt VS开发控件以及Qt VS-addin。 注意Qt6.2.4只能跟VTK9.2.6联合编译&#xff08;目前VTK9和Qt6的相互支持版本&#xff09;。 首先下载VTK&#xff0c;需要下载源码和data&#xff1a; Download | VTKhttps://vtk.org/download/ 然后这两个文…...

大数据时代个人信息安全保护小贴士

个人信息安全保护小贴士 1. 朋友圈“五不晒”2. 手机使用“四要”、“六不要”3. 电脑使用“七注意”4. 日常上网“七注意”5. 日常生活“五注意” 互联网就像公路&#xff0c;用户使用它&#xff0c;就会留下脚印。 每个人都在无时不刻的产生数据&#xff0c;在消费数据的同时…...

windows 修改 RDP 远程桌面端口号

打开 PowerShell &#xff0c; 执行regedit 依次展开 PortNumber HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet \Control \Terminal Server \WinStations \RDP-Tcp 右边找到 PortNumber &#xff0c;对应修改自己的端口号 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Co…...

面试题-TS(四):如何在 TypeScript 中使用类和继承?

面试题-TS(4)&#xff1a;如何在 TypeScript 中使用类和继承&#xff1f; 在TypeScript中&#xff0c;类是一种重要的概念&#xff0c;它允许我们使用面向对象的编程风格来组织和管理代码。类提供了一种模板&#xff0c;用于创建具有相同属性和行为的对象。通过继承&#xff0…...

React之JSX的介绍与使用步骤,注意事项,条件渲染,列表渲染以及css样式处理

React之JSX的介绍与使用 一、JSX的介绍二、JSX使用步骤三、JSX注意事项四、JSX中使用JavaScript表达式五、条件渲染六、列表渲染七、CSS样式处理八、JSX 总结 一、JSX的介绍 简介 JSX是JavaScript XML的简写&#xff0c;表示了在Javascript代码中写XML(HTML)格式的代码 优势 声…...

sql进阶:求满足某列数值相加无限接近90%的行(90分位)

sql 一、案例分析二、思路三、代码实现一、案例分析 表中有某个id列和数值列,求数值列占比为90%的id,如有个用户表,存储id和消费金额order_cnt,求一条sql查出消费占比无限接近90%的所有客户,如表中总消费为10000,占比最高的是4000、3000、2800,对应A、B、C用户,查出A、B、C用户…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...