当前位置: 首页 > news >正文

使用BERT分类的可解释性探索

最近尝试了使用BERT将告警信息当成一个文本去做分类,从分类的准召率上来看,还是取得了不错的效果(非结构化数据+强标签训练,BERT确实是一把大杀器)。但准召率并不是唯一追求的目标,在安全场景下,不仅仅需要模型告诉我们分类结果,还必须把这么分类的原因给输出出来,否则仍然无法给运营工作进行提效。

因此,对BERT分类的可解释性上,进行了一番研究探索。但是结果并不理想。。。

1、BERT是如何完成分类任务的

首先,我们需要对BERT的分类逻辑,做进一步深挖。

 BERT的整体架构如上:底层将文本转化为token并进行编码,中间层通过Attention机制进行信息的提炼,上层做最终输出。(其实和CNN的结构非常类似,不同的是使用Attention替换掉了卷积层,增加了序列信息的处理能力。)

在最终输出环节,首位的[CLS]实际上包含了整段文本的信息编码。因此,当需要用BERT完成一个分类任务时,只需要给予[CLS]的输出,拼接一个全连接层,就可以完成最终的分类。

那么[CLS]是如何获得整段文本的信息编码的呢?这里会涉及到Attention的实现细节,偏复杂,但我们可以仅从信息传递的角度来理解。Attention从设计思路上,是在计算其他token和当前token的相关性,强相关的token会获得更高的Attention权重。但[CLS]更加特殊,它的Attention计算方式通常是将所有token的向量表示进行加权平均,其中权重由Attention决定。这种方式可以看作是对整个输入序列的向量表示进行汇总,得到一个表示整个序列语义信息的向量。

总结来说就是,经过一层BERT网络之后,token携带的是当前位置和其他位置的关联信息,而[CLS]则是将所有token的信息进行汇总。经过多层的迭代,不断加工信息,得到最终的结果。

2、过程中可提取的信息

在了解了BERT分类的原理之后,我们来尝试挖掘一下其中的可解释性。最直观的,可以通过Attention的权重,来大致掌握BERT的信息传递过程。使用bertviz可以实现这个过程:

结合这张图,也可以再理解一下BERT的工作和信息传递机制。

其中每一个单元是一个Attention单元计算过程,称之为head。连线的粗细代表了token之间信息传递权重(也可以理解成相关性)。其中,首个Token即是[CLS]。上面这个图,可以看到几个明显的特征:

  • 0-3层中,有比较多的左侧所有token至首位[CLS]的连线,代表着[CLS]在通过多个维度和层级提取全量信息。
  • 4-7层中,[CLS]的信息提取开始出现针对性,不再是全局等权重提取。
  • 5-6层中,出现了多个token往某一位特定token汇集的现象,而那个token是当前文本分类的关键因素。
  • 0-4层中,有比较多的平行线,代表着在提取序列信息,即token之间的前后相关性。
  • 7-8层往后,连线已经比较均匀,代表前面的层级已经完成了信息处理,后置的部分不再需要额外计算。

通过分析BERT的信息传递过程,虽然能够大致理解分类的逻辑,但因为经过了多层多头的信息加工,实际逻辑很复杂,无法直接提取出了权重较大的因素。

尝试考虑了一下通过最后的分类层(即[CLS]之后的全连接层)来分析权重,但最后一层的[CLS]也是个多轮加工后的信息,并不直接对应某个token的贡献,看起来也不可行。

3、黑盒可解释性工具

通过对BERT工作原理的剖析,可以看到对一个深度非线形模型去做解释,基本上是不可行的。因此,行业内也尝试了用黑盒的办法去探究算法的分类原理。其中,比较知名的就是Lime和SHAP

Lime

Lime的思想是:深度模型在某个局部仍然是线形的。因此,可以通过在目标样本周围生成相似样本,然后用线形模型去拟合深度模型的效果,从而得到近似的分类逻辑。而线形模型就很好得出特征贡献的权重了。

具体细节网上比较多,就不过多赘述了。Github:GitHub - marcotcr/lime: Lime: Explaining the predictions of any machine learning classifier

做了一次简单尝试,结果并不如预期。

Shap

SHAP的思想是:控制变量法,如果某个特征出现或不出现,可以改变分类结果,那么这个特征一定是比较重要的。因此,可以通过尝试该特征出现或不出现的各种情况,来计算对分类结果的贡献。

官方文档:shap.Explainer — SHAP latest documentation

做了一次简单尝试,结果并不如预期。

ChatGPT

不论是Lime和SHAP,都会涉及到一个复杂的遍历运算过程,得到可解释结果需要花费较长的计算时间。不符合当前场景的原始目标,因此,没有做进一步调教工作。(理论上来说,优化内部特征选取的逻辑,应该能够比较好的贴合人类直觉。)

这个时候,想到了使用ChatGPT来进行解释。尝试构造了如下Prompt

角色:你是一个分析安全告警的专家,下面会给你一段告警,请做出精简的解读。
限制:请严格依照以下指令回答问题:
1.如果问题说明了该告警是误报还是非误报,请按照问题说明的研判结果进行分析。
2.问题中会包含多个关键字段,请挑选去其中最异常的部分,不要超过5个。
3.请对关键词进行必要的解读,不要直接复述出来。

已知如下告警是误报,请分析原因,并对其中的关键特征进行解读。

调教一番之后,效果并不理想。思考了一下原因,个人认为是BERT的分类和ChatGPT的分析并不一致。BERT分类依据主要来源于微调的过程,即仍然是基于历史数据进行的分析;而ChatGPT是基于公开样本进行的学习,得不到内部历史信息的支撑。

给到ChatGPT一些内部数据做微调,也许能够获得更好的效果。

结论

总体来说,对深度模型做解释仍然是一个很困难的工作,更别提需要在线上实时得出相应的分析结论了。

传统可解释性方法的场景偏向于零星的分析场景,主要用于帮助算法人员去理解和优化模型,和线上的使用场景存在一定的偏差。

从目前的试验来看,应当是需要两个模型分别来完成分类和可解释性任务,但必须共享同一份数据和知识。因此,喂给ChatGPT一些数据做微调(但是缺乏标签,需要走无监督的逻辑),大概是可探索的方向。

相关文章:

使用BERT分类的可解释性探索

最近尝试了使用BERT将告警信息当成一个文本去做分类,从分类的准召率上来看,还是取得了不错的效果(非结构化数据强标签训练,BERT确实是一把大杀器)。但准召率并不是唯一追求的目标,在安全场景下,…...

web APIs-练习二

轮播图点击切换&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" content"…...

rpc通信原理浅析

rpc通信原理浅析 rpc(remote procedure call)&#xff0c;即远程过程调用&#xff0c;广泛用于分布式或是异构环境下的通信&#xff0c;数据格式一般采取protobuf。 protobuf&#xff08;protocol buffer&#xff09;是google 的一种数据交换的格式&#xff0c;它独立于平台语…...

【机器学习】分类算法 - KNN算法(K-近邻算法)KNeighborsClassifier

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;零基础快速入门人工智能《机器学习入门到精通》 K-近邻算法 1、什么是K-近邻算法&#xff1f;2、K-近邻算法API3、…...

Spring Security 6.x 系列【64】扩展篇之多线程支持

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列Spring Security 版本 6.1.0 本系列Spring Authorization Server 版本 1.1.0 源码地址:https://gitee.com/pearl-organization/study-spring-security-demo 文章目录 1. 问题演示2. 解决方案:…...

Elasticsearch 简单搜索查询案例

1.MySql表结构/数据 SET FOREIGN_KEY_CHECKS0;-- ---------------------------- -- Table structure for user_lables -- ---------------------------- DROP TABLE IF EXISTS user_lables; CREATE TABLE user_lables (id varchar(255) DEFAULT NULL COMMENT 用户唯一标识,age…...

【RabbitMQ(day1)】RabbitMQ的概述和安装

入门RabbitMQ 一、RabbitMQ的概述二、RabbitMQ的安装三、RabbitMQ管理命令行四、RabbitMQ的GUI界面 一、RabbitMQ的概述 MQ&#xff08;Message Queue&#xff09;翻译为消息队列&#xff0c;通过典型的【生产者】和【消费者】模型&#xff0c;生产者不断向消息队列中生产消息&…...

Too many files with unapproved license: 2 See RAT report

解决方案 mvn -Prelease-nacos -Dmaven.test.skiptrue -Dpmd.skiptrue -Dcheckstyle.skiptrue -Drat.numUnapprovedLicenses100 clean install 或者 mvn -Prelease-nacos -Dmaven.test.skiptrue -Drat.numUnapprovedLicenses100 clean install...

Windows11的VTK安装:VS201x+Qt5/Qt6 +VTK7.1/VTK9.2.6

需要提前安装好VS2017和VS2019和Qt VS开发控件以及Qt VS-addin。 注意Qt6.2.4只能跟VTK9.2.6联合编译&#xff08;目前VTK9和Qt6的相互支持版本&#xff09;。 首先下载VTK&#xff0c;需要下载源码和data&#xff1a; Download | VTKhttps://vtk.org/download/ 然后这两个文…...

大数据时代个人信息安全保护小贴士

个人信息安全保护小贴士 1. 朋友圈“五不晒”2. 手机使用“四要”、“六不要”3. 电脑使用“七注意”4. 日常上网“七注意”5. 日常生活“五注意” 互联网就像公路&#xff0c;用户使用它&#xff0c;就会留下脚印。 每个人都在无时不刻的产生数据&#xff0c;在消费数据的同时…...

windows 修改 RDP 远程桌面端口号

打开 PowerShell &#xff0c; 执行regedit 依次展开 PortNumber HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet \Control \Terminal Server \WinStations \RDP-Tcp 右边找到 PortNumber &#xff0c;对应修改自己的端口号 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Co…...

面试题-TS(四):如何在 TypeScript 中使用类和继承?

面试题-TS(4)&#xff1a;如何在 TypeScript 中使用类和继承&#xff1f; 在TypeScript中&#xff0c;类是一种重要的概念&#xff0c;它允许我们使用面向对象的编程风格来组织和管理代码。类提供了一种模板&#xff0c;用于创建具有相同属性和行为的对象。通过继承&#xff0…...

React之JSX的介绍与使用步骤,注意事项,条件渲染,列表渲染以及css样式处理

React之JSX的介绍与使用 一、JSX的介绍二、JSX使用步骤三、JSX注意事项四、JSX中使用JavaScript表达式五、条件渲染六、列表渲染七、CSS样式处理八、JSX 总结 一、JSX的介绍 简介 JSX是JavaScript XML的简写&#xff0c;表示了在Javascript代码中写XML(HTML)格式的代码 优势 声…...

sql进阶:求满足某列数值相加无限接近90%的行(90分位)

sql 一、案例分析二、思路三、代码实现一、案例分析 表中有某个id列和数值列,求数值列占比为90%的id,如有个用户表,存储id和消费金额order_cnt,求一条sql查出消费占比无限接近90%的所有客户,如表中总消费为10000,占比最高的是4000、3000、2800,对应A、B、C用户,查出A、B、C用户…...

设计模式大白话——观察者模式

文章目录 一、概述二、示例三、模式定义四、其他 一、概述 ​ 与其叫他观察者模式&#xff0c;我更愿意叫他叫 订阅-发布模式 &#xff0c;这种模式在我们生活中非常常见&#xff0c;比如&#xff1a;追番了某个电视剧&#xff0c;当电视剧有更新的时候会第一时间通知你。当你…...

机器学习小记-序

机器学习是人工智能的一个重要分支&#xff0c;根据学习任务的不同&#xff0c;可以将机器学习分为以下几类&#xff1a; 监督学习&#xff08;Supervised Learning&#xff09;&#xff1a; 应用场景&#xff1a;监督学习适用于已标记数据集的任务&#xff0c;其中每个样本都有…...

IP基础知识总结

IP他负责的是把IP数据包在不同网络间传送&#xff0c;这是网络设计相关的&#xff0c;与操作系统没有关系。所以这部分知识&#xff0c;不是网络的重点。IP和路由交换技术联系紧密。但是要作为基本知识点记住。 一、基本概念 网络层作用&#xff1a;实现主机与主机之间通信。 …...

Java设计模式-单例模式

单例模式 1.单例模式含义 单例模式就是保证一个类仅有一个实例&#xff0c;并提供一个访问它的全局访问点。 其实单例模式很好理解&#xff0c;当我们new一个对象实例的时候&#xff0c;这个对象会被放到一个内存中&#xff0c;当我们再次new同一个对象的实例的时候&#xf…...

小程序----配置原生内置编译插件支持sass

修改project.config.json配置文件 在 project.config.json 文件中&#xff0c;修改setting 下的 useCompilerPlugins 字段为 ["sass"]&#xff0c; 即可开启工具内置的 sass 编译插件。 目前支持三个编译插件&#xff1a;typescript、less、sass 修改之后可以将原.w…...

GitLab 删除项目

1.点击头像 2.点击Profile 3.选择要删除的项目点进去 4.settings-general-Advances-expand 5.然后在弹出框中输入你要删除的项目名称即可...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...