当前位置: 首页 > news >正文

Boyer-Moore 投票算法

这里先贴题目:

Boyer-Moore 投票算法:

通俗点来讲,就是占领据点,像攻城那样,对消。

当你的据点有人时对消,无人时就占领。

 这道题使用该算法可实现时间复杂度为O(n),空间复杂度为O(1),接下来看代码:

int majorityElement(int* nums, int numsSize) {int amzing = nums[0];int count = 0;for (int i = 0; i < numsSize; i++){if (amzing == nums[i])count++;else if (count == 0){amzing = nums[i];count++;}elsecount--;}return amzing;
}

 我们定义一个amzing先记录数组第一个数字,并且数量为0,然后遍历整个数组,当count不为0时,数字不同时相消,数字相同时增加,当count为0时,amzing换其他数字,再增加数量。

通俗点讲:定义一个士兵,数量为0,遍历所有人,当count不为0,如果数字不同,就是遇到敌人,同归于尽,数字相同,遇到友军就加入。当count等于0,据点无人,哪个数字也可以占领。但是有一个阵营的人数占了大半,无论怎么对拼相消,剩下的一定是那个阵营的,也就是那个大半的数字。 

排序:

int cmp(void* p1,void* p2)
{return *(int*)p1 - *(int*)p2;
}int majorityElement(int* nums, int numsSize){qsort(nums,numsSize,4,cmp);return nums[numsSize/2];
}

相关文章:

Boyer-Moore 投票算法

这里先贴题目&#xff1a; Boyer-Moore 投票算法&#xff1a; 通俗点来讲&#xff0c;就是占领据点&#xff0c;像攻城那样&#xff0c;对消。 当你的据点有人时对消&#xff0c;无人时就占领。 这道题使用该算法可实现时间复杂度为O(n),空间复杂度为O(1)&#xff0c;接下来看…...

C# 翻转二叉树

226 翻转二叉树 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1] 示例 2&#xff1a; 输入&#xff1a;root [2,1,3] 输出&#xff1a;…...

RocketMQ教程-(5)-功能特性-消费者分类

Apache RocketMQ 支持 PushConsumer 、 SimpleConsumer 以及 PullConsumer 这三种类型的消费者&#xff0c;本文分别从使用方式、实现原理、可靠性重试和适用场景等方面为您介绍这三种类型的消费者。 背景信息​ Apache RocketMQ 面向不同的业务场景提供了不同消费者类型&…...

Kafka原理剖析

一、简介 Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统&#xff0c;它提供了类似于JMS的特性&#xff0c;但在设计上完全不同&#xff0c;它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性&#xff0c;适用于离线和在线的消息消费&#xff0c;如常规的…...

word怎么转换成pdf?分享几种转换方法

word怎么转换成pdf&#xff1f;将Word文档转换成PDF文件有几个好处。首先&#xff0c;PDF文件通常比Word文档更容易在不同设备和操作系统上查看和共享。其次&#xff0c;PDF文件通常比Word文档更难以修改&#xff0c;这使得它们在需要保护文件内容的情况下更加安全可靠。最后&a…...

基于XDMA 中断模式的 PCIE3.0 QT上位机与FPGA数据交互架构 提供工程源码和QT上位机源码

目录 1、前言2、我已有的PCIE方案3、PCIE理论4、总体设计思路和方案图像产生、发送、缓存数据处理XDMA简介XDMA中断模式图像读取、输出、显示QT上位机及其源码 5、vivado工程详解6、上板调试验证7、福利&#xff1a;工程代码的获取 1、前言 PCIE&#xff08;PCI Express&#…...

Vue 中通用的 css 列表入场动画效果

css 代码 .gradientAnimation {animation-name: gradient;animation-duration: 0.85s;animation-fill-mode: forwards;opacity: 0; }/* 不带前缀的放到最后 */ keyframes gradient {0% {opacity: 0;transform: translate(-100px, 0px);}100% {opacity: 1;transform: translate…...

微分流形2:流形上的矢量场和张量场

来了来了&#xff0c;切向量&#xff0c;切空间。流形上的所有的线性泛函的集合&#xff0c;注意是函数的集合。然后取流形上的某点p&#xff0c;它的切向量为&#xff0c;线性泛函到实数的映射。没错&#xff0c;是函数到实数的映射&#xff0c;是不是想到了求导。我们要逐渐熟…...

C++数组、向量和列表的练习

运行代码&#xff1a; //C数组、向量和列表的练习 #include"std_lib_facilities.h"int main() try {int ii[10] { 0,1,2,3,4,5,6,7,8,9 };for (int i 0; i < 10; i)//把数组中的每个元素值加2ii[i] 2;vector<int>vv(10);for (int i 0; i < 10; i)vv…...

视频剪辑矩阵分发系统Unable to load FFProbe报错技术处理?

问题一 报错处理 对于视频剪辑矩阵分发系统中出现的“Unable to load FFProbe”报错问题&#xff0c;可以采取以下技术处理措施进行解决。 1.检查系统中是否正确安装了FFProbe工具&#xff0c;并确保其路径正确配置。 2.检查系统环境变量是否正确设置&#xff0c;包括FFPr…...

Docker轻量级可视化工具Portainer

Portainer是一个轻量级的管理UI界面&#xff0c;用于管理Docker容器、镜像、卷和网络。它支持端口映射、容器启动、停止、删除、日志查看等功能&#xff0c;同时也提供了可视化的监控和统计功能&#xff0c;可以快速轻松的管理多个Docker主机。Portainer不需要额外安装依赖&…...

功率放大器在电光调制中的应用有哪些

电光调制是一种利用光电效应将电信号转化为光信号的技术。在实现电光调制的过程中&#xff0c;功率放大器作为一个重要的组件&#xff0c;具有对输入电信号进行放大和控制的功能。本文将介绍功率放大器的基本原理、特点以及在电光调制中的应用。 基本原理 功率放大器是一种能够…...

MyBatis入门程序

1.MyBatis 入门程序开发步骤 SqlSession&#xff1a;代表Java程序和数据库之间的会话。&#xff08;HttpSession是Java程序和浏览器之间的会话&#xff09; SqlSessionFactory&#xff1a;是“生产”SqlSession的“工厂”。 工厂模式&#xff1a;如果创建某一个对象&#xff…...

C++快速切换 头文件和源文件

有没有一种快速的方法 &#xff0c; 将头文件中的声明 直接在源文件中自动写出来&#xff0c; 毕竟头文件中已经有声明了&#xff0c; 我只需要写具体实现就行了&#xff0c;没有必要把声明的部分再敲一遍在 Visual Studio 中&#xff0c;你可以使用快速生成函数定义的功能来实…...

对原型、原型链的理解

在 JavaScript 中是使用构造两数来新建一个对象的&#xff0c;每一个构造函数的内部都有一个 prototype 属性&#xff0c;它的属性值是一个对象&#xff0c;这个对象包含了可以由该构造西数的所有实例共享的属性和方法。当使用构造函数新建一个对象后&#xff0c;在这个对象的内…...

7月26日,每日信息差

1、日本经产省将讨论让消费者负担核电站重启费。若被采用&#xff0c;那么即便是与把源自可再生能源作为卖点的新电力公司签约的消费者&#xff0c;也将负担重启核电站的费用 2、国家发改委&#xff1a;电厂存煤和出力均达历史同期最高水平 3、国家深改委&#xff1a;全国统调…...

git修改已经push后的commit注释

回到倒数第8次提交 git rebase -i HEAD~8修改注释&#xff0c;然后把最前面的pick改成edit 修改注释 git commit --amendrebase确认 git rebase --continue强制提交 git push -f origin master参考&#xff1a;https://blog.csdn.net/qq_16942727/article/details/1260355…...

网络云存储服务器,数据库服务器|PetaExpress

云存储服务器是什么&#xff1f; 云存储服务器是一种在线存储(英语:Cloud storage&#xff09;该模式是将数据存储在通常由第三方托管的多个虚拟服务器上&#xff0c;而不是独家服务器上。 云存储服务器有几种结构 架构方法分为两类&#xff1a;一类是通过服务进行架构&…...

java语法基础--基本数据类型

一、数据类型概括 1、整数类型 2、浮点型 3、布尔类型 4、字符类型 二、数据类型的使用 1、整数类型的使用 超出类型范围 //1.1 定义一个byte类型的变量&#xff0c;并且设置它超过byte类型范围// 如果定义的数值在byte类型范围内&#xff0c;那么就能正常使用&#xff0c;//…...

uniapp 微信小程序 预览pdf方法

效果图&#xff1a; 1、在小程序中 // #ifdef MP */ 是区分运行的环境&#xff0c;在小程序中可使用如下方法uni.downloadFile({url: item.link,//文件地址success: function (res) {var filePath res.tempFilePath;uni.openDocument({filePath: filePath,showMenu: false…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...