PX4从放弃到精通(二十九):传感器冗余机制
文章目录
- 前言
- 一、parametersUpdate
- 二、imuPoll
- 三、 put
- 四、 confidence
- 五、 get_best
前言
PX4 1.13.2
一个人可以走的更快,一群人才能走的更远,可加文章底部微信名片
代码的位置如下
PX4冗余机制主要通过传感读数错误计数和传感器的优先级进行选优

一、parametersUpdate
这个函数主要是初始化每个imu传感器的优先级,PX4传感器在经过校准后,会给每个同类的传感器生成一个优先级,这个优先级在冗余机制中有着重要的作用
void VotedSensorsUpdate::parametersUpdate()
{_parameter_update = true;updateParams();// run through all IMUsfor (uint8_t uorb_index = 0; uorb_index < MAX_SENSOR_COUNT; uorb_index++) {uORB::SubscriptionData<vehicle_imu_s> imu{ORB_ID(vehicle_imu), uorb_index};imu.update();if (imu.advertised() && (imu.get().timestamp != 0)&& (imu.get().accel_device_id != 0) && (imu.get().gyro_device_id != 0)) {// find corresponding configured accel priorityint8_t accel_cal_index = calibration::FindCurrentCalibrationIndex("ACC", imu.get().accel_device_id);if (accel_cal_index >= 0) {// found matching CAL_ACCx_PRIOint32_t accel_priority_old = _accel.priority_configured[uorb_index];_accel.priority_configured[uorb_index] = calibration::GetCalibrationParamInt32("ACC", "PRIO", accel_cal_index);if (accel_priority_old != _accel.priority_configured[uorb_index]) {if (_accel.priority_configured[uorb_index] == 0) {// disabled_accel.priority[uorb_index] = 0;} else {// change relative priority to incorporate any sensor faultsint priority_change = _accel.priority_configured[uorb_index] - accel_priority_old;_accel.priority[uorb_index] = math::constrain(_accel.priority[uorb_index] + priority_change, static_cast<int32_t>(1),static_cast<int32_t>(100));}}}// find corresponding configured gyro priorityint8_t gyro_cal_index = calibration::FindCurrentCalibrationIndex("GYRO", imu.get().gyro_device_id);if (gyro_cal_index >= 0) {// found matching CAL_GYROx_PRIOint32_t gyro_priority_old = _gyro.priority_configured[uorb_index];_gyro.priority_configured[uorb_index] = calibration::GetCalibrationParamInt32("GYRO", "PRIO", gyro_cal_index);if (gyro_priority_old != _gyro.priority_configured[uorb_index]) {if (_gyro.priority_configured[uorb_index] == 0) {// disabled_gyro.priority[uorb_index] = 0;} else {// change relative priority to incorporate any sensor faultsint priority_change = _gyro.priority_configured[uorb_index] - gyro_priority_old;_gyro.priority[uorb_index] = math::constrain(_gyro.priority[uorb_index] + priority_change, static_cast<int32_t>(1),static_cast<int32_t>(100));}}}}}
}
二、imuPoll
这个函数里首先是对传感器的数据进行循环订阅,然后赋值到_last_sensor_data中,通过put方法将数据放入链表中进行处理。PX4通过单向链表DataValidator对传感器的数据进行存储和处理,put函数调用了DataValidator的put函数,在里面计算了数据的均方根误差还有错误密度,然后通过错误密度计算出每个传感器的confidence,根据confidence和优先级,通过get_best得出目前的最优传感器,然后把最优传感器的数据通过形参raw返回,这个raw最后会通过sensor_combine话题发布。

void VotedSensorsUpdate::imuPoll(struct sensor_combined_s &raw)
{const hrt_abstime time_now_us = hrt_absolute_time();for (int uorb_index = 0; uorb_index < MAX_SENSOR_COUNT; uorb_index++) {vehicle_imu_s imu_report;if ((_accel.priority[uorb_index] > 0) && (_gyro.priority[uorb_index] > 0)&& _vehicle_imu_sub[uorb_index].update(&imu_report)) {// copy corresponding vehicle_imu_status for accel & gyro error countsvehicle_imu_status_s imu_status{};_vehicle_imu_status_subs[uorb_index].copy(&imu_status);_accel_device_id[uorb_index] = imu_report.accel_device_id;_gyro_device_id[uorb_index] = imu_report.gyro_device_id;// convert the delta velocities to an equivalent accelerationconst float accel_dt_inv = 1.e6f / (float)imu_report.delta_velocity_dt;Vector3f accel_data = Vector3f{imu_report.delta_velocity} * accel_dt_inv;// convert the delta angles to an equivalent angular rateconst float gyro_dt_inv = 1.e6f / (float)imu_report.delta_angle_dt;Vector3f gyro_rate = Vector3f{imu_report.delta_angle} * gyro_dt_inv;_last_sensor_data[uorb_index].timestamp = imu_report.timestamp_sample;_last_sensor_data[uorb_index].accelerometer_m_s2[0] = accel_data(0);_last_sensor_data[uorb_index].accelerometer_m_s2[1] = accel_data(1);_last_sensor_data[uorb_index].accelerometer_m_s2[2] = accel_data(2);_last_sensor_data[uorb_index].accelerometer_integral_dt = imu_report.delta_velocity_dt;_last_sensor_data[uorb_index].accelerometer_clipping = imu_report.delta_velocity_clipping;_last_sensor_data[uorb_index].gyro_rad[0] = gyro_rate(0);_last_sensor_data[uorb_index].gyro_rad[1] = gyro_rate(1);_last_sensor_data[uorb_index].gyro_rad[2] = gyro_rate(2);_last_sensor_data[uorb_index].gyro_integral_dt = imu_report.delta_angle_dt;_last_sensor_data[uorb_index].accel_calibration_count = imu_report.accel_calibration_count;_last_sensor_data[uorb_index].gyro_calibration_count = imu_report.gyro_calibration_count;_last_accel_timestamp[uorb_index] = imu_report.timestamp_sample;_accel.voter.put(uorb_index, imu_report.timestamp, _last_sensor_data[uorb_index].accelerometer_m_s2,imu_status.accel_error_count, _accel.priority[uorb_index]);_gyro.voter.put(uorb_index, imu_report.timestamp, _last_sensor_data[uorb_index].gyro_rad,imu_status.gyro_error_count, _gyro.priority[uorb_index]);}}// find the best sensorint accel_best_index = _accel.last_best_vote;int gyro_best_index = _gyro.last_best_vote;if (!_parameter_update) {// update current accel/gyro selection, skipped on cycles where parameters update_accel.voter.get_best(time_now_us, &accel_best_index);_gyro.voter.get_best(time_now_us, &gyro_best_index);if (!_param_sens_imu_mode.get() && ((_selection.timestamp != 0) || (_sensor_selection_sub.updated()))) {// use sensor_selection to find bestif (_sensor_selection_sub.update(&_selection)) {// reset inconsistency checks against primaryfor (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {_accel_diff[sensor_index].zero();_gyro_diff[sensor_index].zero();}}for (int i = 0; i < MAX_SENSOR_COUNT; i++) {if ((_accel_device_id[i] != 0) && (_accel_device_id[i] == _selection.accel_device_id)) {accel_best_index = i;}if ((_gyro_device_id[i] != 0) && (_gyro_device_id[i] == _selection.gyro_device_id)) {gyro_best_index = i;}}} else {// use sensor voter to find best if SENS_IMU_MODE is enabled or ORB_ID(sensor_selection) has never publishedcheckFailover(_accel, "Accel", events::px4::enums::sensor_type_t::accel);checkFailover(_gyro, "Gyro", events::px4::enums::sensor_type_t::gyro);}}// write data for the best sensor to output variablesif ((accel_best_index >= 0) && (accel_best_index < MAX_SENSOR_COUNT) && (_accel_device_id[accel_best_index] != 0)&& (gyro_best_index >= 0) && (gyro_best_index < MAX_SENSOR_COUNT) && (_gyro_device_id[gyro_best_index] != 0)) {raw.timestamp = _last_sensor_data[gyro_best_index].timestamp;memcpy(&raw.accelerometer_m_s2, &_last_sensor_data[accel_best_index].accelerometer_m_s2,sizeof(raw.accelerometer_m_s2));memcpy(&raw.gyro_rad, &_last_sensor_data[gyro_best_index].gyro_rad, sizeof(raw.gyro_rad));raw.accelerometer_integral_dt = _last_sensor_data[accel_best_index].accelerometer_integral_dt;raw.gyro_integral_dt = _last_sensor_data[gyro_best_index].gyro_integral_dt;raw.accelerometer_clipping = _last_sensor_data[accel_best_index].accelerometer_clipping;raw.accel_calibration_count = _last_sensor_data[accel_best_index].accel_calibration_count;raw.gyro_calibration_count = _last_sensor_data[gyro_best_index].gyro_calibration_count;if ((accel_best_index != _accel.last_best_vote) || (_selection.accel_device_id != _accel_device_id[accel_best_index])) {_accel.last_best_vote = (uint8_t)accel_best_index;_selection.accel_device_id = _accel_device_id[accel_best_index];_selection_changed = true;}if ((_gyro.last_best_vote != gyro_best_index) || (_selection.gyro_device_id != _gyro_device_id[gyro_best_index])) {_gyro.last_best_vote = (uint8_t)gyro_best_index;_selection.gyro_device_id = _gyro_device_id[gyro_best_index];_selection_changed = true;// clear all registered callbacksfor (auto &sub : _vehicle_imu_sub) {sub.unregisterCallback();}for (int i = 0; i < MAX_SENSOR_COUNT; i++) {vehicle_imu_s report{};if (_vehicle_imu_sub[i].copy(&report)) {if ((report.gyro_device_id != 0) && (report.gyro_device_id == _gyro_device_id[gyro_best_index])) {_vehicle_imu_sub[i].registerCallback();}}}}}// publish sensor selection if changedif (_param_sens_imu_mode.get() || (_selection.timestamp == 0)) {if (_selection_changed) {// don't publish until selected IDs are validif (_selection.accel_device_id > 0 && _selection.gyro_device_id > 0) {_selection.timestamp = hrt_absolute_time();_sensor_selection_pub.publish(_selection);_selection_changed = false;}for (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {_accel_diff[sensor_index].zero();_gyro_diff[sensor_index].zero();}}}
}
三、 put
这个函数计算了错误密度_error_density,这个将在计算confidence时用到,这个_error_density取决于_error_count,而_error_count实在传感器驱动部分赋值的,也就是说这里的错误计数是根据数据的读取错误来确定的,而数据本身的对错是不关注的,个人觉得这个地方还需要改进,例如气压计被堵住导致数据不准,应该加一些这方面的判断。

除了_error_density的计算,还计算了均方根误差_rms
void DataValidator::put(uint64_t timestamp, const float val[dimensions], uint32_t error_count_in, uint8_t priority_in)
{_event_count++;if (error_count_in > _error_count) {_error_density += (error_count_in - _error_count);} else if (_error_density > 0) {_error_density--;}_error_count = error_count_in;_priority = priority_in;for (unsigned i = 0; i < dimensions; i++) {if (PX4_ISFINITE(val[i])) {if (_time_last == 0) {_mean[i] = 0;_lp[i] = val[i];_M2[i] = 0;} else {float lp_val = val[i] - _lp[i];float delta_val = lp_val - _mean[i];_mean[i] += delta_val / _event_count;_M2[i] += delta_val * (lp_val - _mean[i]);_rms[i] = sqrtf(_M2[i] / (_event_count - 1));if (fabsf(_value[i] - val[i]) < 0.000001f) {_value_equal_count++;} else {_value_equal_count = 0;}}// XXX replace with better filter, make it auto-tune to update rate_lp[i] = _lp[i] * 0.99f + 0.01f * val[i];_value[i] = val[i];}}_time_last = timestamp;
}
四、 confidence
前面是一些错误判断以及错误密度抗饱和,没问题的话就根据错误密度_error_density计算confidence。
公式如下。
ret = 1.0f - (_error_density / ERROR_DENSITY_WINDOW);、
_error_density是在上面put函数里根据传感器的_error_count计算的,ERROR_DENSITY_WINDOW是常数100.
float DataValidator::confidence(uint64_t timestamp)
{float ret = 1.0f;/* check if we have any data */if (_time_last == 0) {_error_mask |= ERROR_FLAG_NO_DATA;ret = 0.0f;} else if (timestamp > _time_last + _timeout_interval) {/* timed out - that's it */_error_mask |= ERROR_FLAG_TIMEOUT;ret = 0.0f;} else if (_value_equal_count > _value_equal_count_threshold) {/* we got the exact same sensor value N times in a row */_error_mask |= ERROR_FLAG_STALE_DATA;ret = 0.0f;} else if (_error_count > NORETURN_ERRCOUNT) {/* check error count limit */_error_mask |= ERROR_FLAG_HIGH_ERRCOUNT;ret = 0.0f;} else if (_error_density > ERROR_DENSITY_WINDOW) {/* cap error density counter at window size */_error_mask |= ERROR_FLAG_HIGH_ERRDENSITY;_error_density = ERROR_DENSITY_WINDOW;}/* no critical errors */if (ret > 0.0f) {/* return local error density for last N measurements */ret = 1.0f - (_error_density / ERROR_DENSITY_WINDOW);if (ret > 0.0f) {_error_mask = ERROR_FLAG_NO_ERROR;}}return ret;
}
五、 get_best
这个函数就是根据confidence和传感器优先级来确定最优的传感器,判断如下,max_confidence是目前最优传感器的confidence,max_priority是目前最优的传感器的优先级,confidence是当前的传感器的confidence,根据这两个confidence 还有优先级确定当前传感器是否要取代最优传感器。
可以看到,((max_confidence < MIN_REGULAR_CONFIDENCE) && (confidence >=
MIN_REGULAR_CONFIDENCE)) ,这个判断一般是在目前最优传感器失效的情况下才会触发,所以这个判断是没有考虑优先级的,这很好理解,级别你优先级再高,如果你失效了,我只能往低优先级的传感器切换。实际上这个条件一般不会触发,一个稳定的硬件很少会出现传感器损坏的情况。
大多数时候会在后面两个判断里面进行判断,只有在优先级比目前最优传感器高或者相等的情况下,才有可能取代目前的最优传感器,否则即使confidence高也没用,因此,我们可以手动的给一些质量好的传感器设置高的优先级。否则的话,飞控是有可能一直在使用低质量的传感器的(即便精度较差)
if ((((max_confidence < MIN_REGULAR_CONFIDENCE) && (confidence >=
MIN_REGULAR_CONFIDENCE)) ||
(confidence > max_confidence && (next->priority() >= max_priority)) ||
(fabsf(confidence - max_confidence) < 0.01f && (next->priority() > max_priority))) &&
(confidence > 0.0f)) {
float *DataValidatorGroup::get_best(uint64_t timestamp, int *index)
{DataValidator *next = _first;// XXX This should eventually also include votingint pre_check_best = _curr_best;float pre_check_confidence = 1.0f;int pre_check_prio = -1;float max_confidence = -1.0f;int max_priority = -1000;int max_index = -1;DataValidator *best = nullptr;int i = 0;while (next != nullptr) {float confidence = next->confidence(timestamp);if (i == pre_check_best) {pre_check_prio = next->priority();pre_check_confidence = confidence;}/** Switch if:* 1) the confidence is higher and priority is equal or higher* 2) the confidence is less than 1% different and the priority is higher*/if ((((max_confidence < MIN_REGULAR_CONFIDENCE) && (confidence >= MIN_REGULAR_CONFIDENCE)) ||(confidence > max_confidence && (next->priority() >= max_priority)) ||(fabsf(confidence - max_confidence) < 0.01f && (next->priority() > max_priority))) &&(confidence > 0.0f)) {max_index = i;max_confidence = confidence;max_priority = next->priority();best = next;}next = next->sibling();i++;}/* the current best sensor is not matching the previous best sensor,* or the only sensor went bad */if (max_index != _curr_best || ((max_confidence < FLT_EPSILON) && (_curr_best >= 0))) {bool true_failsafe = true;/* check whether the switch was a failsafe or preferring a higher priority sensor */if (pre_check_prio != -1 && pre_check_prio < max_priority &&fabsf(pre_check_confidence - max_confidence) < 0.1f) {/* this is not a failover */true_failsafe = false;/* reset error flags, this is likely a hotplug sensor coming online late */if (best != nullptr) {best->reset_state();}}/* if we're no initialized, initialize the bookkeeping but do not count a failsafe */if (_curr_best < 0) {_prev_best = max_index;} else {/* we were initialized before, this is a real failsafe */_prev_best = pre_check_best;if (true_failsafe) {_toggle_count++;/* if this is the first time, log when we failed */if (_first_failover_time == 0) {_first_failover_time = timestamp;}}}/* for all cases we want to keep a record of the best index */_curr_best = max_index;}*index = max_index;return (best) ? best->value() : nullptr;
}
相关文章:
PX4从放弃到精通(二十九):传感器冗余机制
文章目录 前言一、parametersUpdate二、imuPoll三、 put四、 confidence五、 get_best 前言 PX4 1.13.2 一个人可以走的更快,一群人才能走的更远,可加文章底部微信名片 代码的位置如下 PX4冗余机制主要通过传感读数错误计数和传感器的优先级进行选优 …...
vue 设置数组
手写获取数据 <el-form-item label"缴纳方"><el-select v-model"form.invoiceCategoryName" placeholder"请选择缴纳方"><el-optionv-for"item in kplmList":key"item.value":label"item.label":v…...
9.NIO非阻塞式网络通信入门
highlight: arduino-light Selector 示意图和特点说明 一个 I/O 线程可以并发处理 N 个客户端连接和读写操作,这从根本上解决了传统同步阻塞 I/O 一连接一线程模型。架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。 服务端流程 1、当客户端连接服务端时&…...
QT基于TCP协议实现数据传输以及波形绘制
这个玩意我做了两个,一个是安卓app,一个是Windows程序。代码并非全部都是由我从无到有实现,只是实现了我想要的功能。多亏了巨人的肩膀,开源万岁!!! 我把程序放到GitHub上,需要的可…...
苹果safari浏览器播放不了video标签视频
今天遇到了个神奇的问题,视频文件在pc端和安卓手机上播放都没问题,但是在ios上就是播放不了,大概代码如下: 前端代码: <video id"video" width"350" height"500" controls><s…...
【粒子群算法和蝴蝶算法组合】粒子群混沌混合蝴蝶优化算法研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Java设计模式之单例模式详解(懒汉式和饿汉式)
在开发工作中,有些类只需要存在一个实例,这时就可以使用单例模式。Java中的单例模式是一种常见的设计模式,它确保一个类只有一个实例,并提供全局访问点。下面来介绍一下两种常见的单例模式:懒汉式和饿汉式。 一、懒汉式…...
软件测试基本知识
安全测试 安全防护策略?(漏洞扫描、入侵检查、安全日志、隔离防护) 安全日志:用于记录非法用户的登录名称、操作时间及内容等信息,以便发现问题并提出解决措施;安全日志仅记录相关信息,不对非…...
Vue项目中强制刷新页面的方法
我们在动态切换组件的过程中,导航栏和底栏不动,动态切换中间区域的情况,在首页可以进行跳转任意组件,在组件与组件之间不能相互跳转,路由发生了变化,但是页面未改变,这时我们就需要强制刷新页面…...
文件按关键字分组-切割-染色-写入excel
1. 背景 针对下面的文件data.csv,首先根据fid进行排序,然后分组,使相同fid的记录放到同一个excel文件中,并对每列重复的数据元素染上红色。 fid,user_id -1000078398032092029,230410010036537520 -1000078398032092029,23042301…...
爬虫的基本原理:爬虫概述及爬取过程
前言 随着互联网的不断发展和普及,我们的生活越来越离不开网络。而网络世界中有着海量的信息和数据,这些信息和数据对于我们的工作和生活都有很大的帮助。但是,如何高效地获取这些数据呢?这时候,爬虫这个工具就派上用…...
cocos2D插件转3D插件
cocos2D插件转3D插件 use strict;/*** 3d插件api映射,兼容2d插件* */let fs require("fs");let path require("path");let baseDir ;const prsPath (Editor.Project && Editor.Project.path ? Editor.Project.path : Editor.remote.projectP…...
[Angular] 主从表结构,从表记录在主表固定栏位上呈现
Background 主从表结构,有时为了方便数据呈现,在UI上不显示从表资料,那么需要动态把从表的资料加载到主表的固定栏位上。 例如:主表是人员信息,从表是银行卡信息,一个人在同一家银行可能有多张银行卡&…...
Kotlin Multiplatform 创建多平台分发库
目标:通过本教程学习如何使用 Kotlin Multiplatform Library 创建多平台分发库(iOS,安卓)。 创建一个项目 1、本教程使用的是Android Studio创建 2、选择 新建工程,选择 Kotlin Multiplatform Library 3、点击next 输入需要创建的项目名称以…...
[SQL挖掘机] - union/union all 使用注意事项
因为当使用union和union all操作符时,有一些注意事项需要考虑: 1. 列数和数据类型匹配: 要使用union或union all合并结果集,两个或多个查询的 select 语句必须返回相同数量和类型的列。确保每个查询返回相同的列数,并…...
php 单例模式
1,单例模式,属于创建设计模式,简单来说就是一个类只能有一个实例化对象,并提供一个当前类的全局唯一可访问入口; 2,例子 <?phpclass Singleton {private static $instance null;// 禁止被实例化priva…...
【数据结构】实验二:顺序表
实验二 顺序表 一、实验目的与要求 1)熟悉顺序表的类型定义; 2)熟悉顺序表的基本操作; 3)灵活应用顺序表解决具体应用问题。 二、实验内容 1)在一个整数序列a1,a2,…,an中,若存在一个数&…...
【高级数据结构】线段树
目录 最大数(单点修改,区间查询) 线段树1(区间修改,区间查询) 最大数(单点修改,区间查询) 洛谷:最大数https://www.luogu.com.cn/problem/P1198 题目描述 …...
qt简易闹钟
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);ui->stopBtn->setDisabled(true);this->setFixedSize(this->size()); //设置固定大小this->s…...
python和c加加有什么区别,c和c++和python先学哪个
本篇文章给大家谈谈c加加编程和python编程有什么区别,以及python和c加加有什么区别,希望对各位有所帮助,不要忘了收藏本站喔。 1、python和c学哪个好 学C好。 C通常比Python更快,因为C是一种编译型语言,而Python则是…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
