把数组排成最小的数 AcWing(JAVA)
输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个。
例如输入数组 [3,32,321][3,32,321],则打印出这 33 个数字能排成的最小数字 321323321323。
数据范围
数组长度 [0,500][0,500]。
样例:
输入:[3, 32, 321]
输出:321323
注意:输出数字的格式为字符串。
解题思路: 首先假设数组内的数为 [a, b, c]。若定义一个新的排序方法即 ab > ba,即a在头部的拼接结果比b在头部的拼接结果大,那么就交换a,b在数组内的位置。以这种判断方式排列出来的新数组,从前往后拼接起来就是我们本题需要的最小数。
以下是证明上述排序方式是有意义的:
设a, b, c 的位数分别为n , m , k。
1.若 ab >= ba 且 ab <= ba是否能证明 ab = ba。
证明:由于ab与ba位数相同,在数值上比较本假设理应成立,所以此排序满足反对称性。
2.若 ab < ba 且 bc < cb,是否能证明 ac < ca。
证明:ab = a*10^m + b, ba = b*10^n + a,ac = a*10^k + c, ca = c*10^n + a;
由 ab < ba 得 a/b = (10^n - 1 )/(10^m - 1)
由 bc < cb 得b/c = (10^m - 1)/(10^k - 1)
只需证明 a/c = (10^n - 1)/(10^k - 1)
结论显然成立。即此排序方法满足传递性。
由于sort()方法核心是快速排序,快排核心就是反对称性(特定情况唯一)与 传递性(让数据有梯度)。所以此新定义得排序方法有意义。
最后我们只需证明我们排序后的数组就是最优数组即可:
设我们排序后的数组是 [a, b, c, d],那么最小数就是 abcd
利用反证法:
假设最小数是acbd,由于a,d所处位置一样所以比较bc,cb大小即可
由我们的新排序定义可知 bc < cb 所以 abcd < acbd,所以假设不成立。
即排序后的数组就是最优数组。
理论成立代码如下:
class Solution {public String printMinNumber(int[] nums) {Integer a[] = new Integer[nums.length];for(int i =0; i < nums.length; i ++) a[i] = nums[i];//只能转换成Integer类Arrays.sort(a, new Comparator<Integer>() {public int compare(Integer o1, Integer o2) {//新排序方法String a = "" + o1;String b = "" + o2;if(Integer.valueOf(a + b) > Integer.valueOf(b + a))return 1;//交换位置else return -1;//不换}});String s1 = "";for(int i = 0; i < a.length; i ++) s1 = s1 + a[i];return s1;}
}
相关文章:
把数组排成最小的数 AcWing(JAVA)
输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个。 例如输入数组 [3,32,321][3,32,321],则打印出这 33 个数字能排成的最小数字 321323321323。 数据范围 数组长度 [0,500][0,500]。 样例&#x…...
4.3 PBR
1. 实验目的 熟悉PBR的应用场景掌握PBR的配置方法2. 实验拓扑 PBR实验拓扑如图4-8所示: 图4-8:PBR 3. 实验步骤 (1) IP地址的配置 R1的配置 <Huawei>system-view...
hmac — 加密消息签名和验证
hmac — 加密消息签名和验证 1.概述 它的全称叫做Hash-based Message Authentication Code: 哈希消息认证码,从名字中就可以看出来这个hmac基于哈希函数的,并且还得提供一个秘钥key,它的作用就是用来保证消息的完整性,不可篡改。…...
AWS攻略——使用ACL限制访问
文章目录确定出口IP修改ACL修改主网络ACL修改入站规则修改子网ACL创建子网ACL新增入站规则新增出站规则关联子网假如我们希望限制只有公司内部的IP可以SSH登录到EC2,则可以考虑使用ACL来实现。 我们延续使用《AWS攻略——创建VPC》的案例,在它的基础上做…...
【已解决】关于 luckysheet 设置纯文本,解决日期格式回显错误的办法
目录 一、现象 二、分析 三、思考过程 五、解决 六、参考链接 一、现象 在excel里面输入内容,如 2023-2-17 12:00 保存后,传回后端的数据被转化成了 数值类型,这显然是一种困扰。 如图所示 二、分析 查阅了文档和一些博客发现 Lucky…...
Jackson
first you need to add dependence: gradle: implementation com.fasterxml.jackson.core:jackson-databind:2.13.1 implementation com.fasterxml.jackson.datatype:jackson-datatype-jsr310:2.13.1原生Jackson的使用示例: /*** 原生Jackson的使用示例*/ public class Jacks…...
字节软件测试岗:惨不忍睹的三面,幸好做足了准备,月薪19k,已拿offer
我今年25岁,专业是电子信息工程本科,19年年末的时候去面试,统一投了测试的岗位,软件硬件都有,那时候面试的两家公司都是做培训的,当初没啥钱,他们以面试为谎言再推荐去培训这点让我特别难受。后…...
vue使用axios发送post请求携带json body参数,后端使用@RequestBody进行接收
前言 最近在做自己项目中,做一个非常简单的新增用户场景,但是使用原生axios发送post请求的时候,还是踩了不少坑的。 唉,说多了都是泪,小小一个新增业务,在自己前后端一起开发的时候,硬是搞了好…...
【python百炼成魔】python之列表详解
文章目录一. 列表的概念1.1 列表是什么?1.2 为什么要使用列表?1.3 列表的定义二. 列表的增删改查操作2.1 列表的读取2.2 列表的切片2.3 列表的查询操作2.3.1 not in ,in 表达式2.3.2 列表元素遍历2.4 列表元素的增加操作2.4.1 append()的相关用法2.4.2 e…...
如何学习 Web3
在本文中,我将总结您可以采取的步骤来学习 Web3。从哪儿开始?当我们想要开始新事物时,我们需要一些指导,以免在一开始就卡住。但我们都是不同的,我们有不同的学习方式。这篇文章基于我学习 Web3 的非常个人的经验。路线…...
大数据框架之Hadoop:MapReduce(一)MapReduce概述
1.1MapReduce定义 MapReduce是一个分布式计算框架,用于编写批处理应用程序,是用户开发“基于Hadoop的数据分析应用”的核心框架。 MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一…...
一文搞定python语法进阶
前言前面我们已经学习了Python的基础语法,了解了Python的分支结构,也就是选择结构、循环结构以及函数这些具体的框架,还学习了列表、元组、字典、字符串这些Python中特有的数据结构,还用这些语法完成了一个简单的名片管理系统。下…...
2019蓝桥杯真题数列求值(填空题) C语言/C++
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 给定数列 1,1,1,3,5,9,17,⋯,从第 4 项开始,每项都是前 3 项的和。 求第 20190324 项的最后 4 位数字。 运行限制 最大运行时间:…...
spring中@Autowire和@Resource的区别在哪里?
介绍今天使用Idea写代码的时候,看到之前的项目中显示有warning的提示,去看了下,是如下代码?Autowire private JdbcTemplate jdbcTemplate;提示的警告信息Field injection is not recommended Inspection info: Spring Team recommends: &quo…...
算法训练营DAY54|583. 两个字符串的删除操作、72. 编辑距离
583. 两个字符串的删除操作 - 力扣(LeetCode)https://leetcode.cn/problems/delete-operation-for-two-strings/这道题也是对于编辑距离的铺垫题目,是可以操作两个字符串的删除,使得两个字符串的字符完全相同,这道题可…...
【Ctfshow_Web】信息收集和爆破
0x00 信息收集 web1 直接查看源码 web2 查看不了源码,抓包即可看到(JS拦截了F12) web3 抓包,发送repeater,在响应包中有Flag字段 web4 题目提示后台地址在robots,访问/robots.txt看到Disallow: /fl…...
基于机器学习的推荐算法研究与实现
摘要随着互联网的普及,人们可以通过搜索引擎、社交网络等方式获取大量的信息资源。但是,面对如此之多的信息,人们往往会感到迷失和困惑,无法快速准确地找到自己需要的信息。在这种情况下,推荐算法的出现为我们提供了一…...
(二十四)ATP应用测试平台——springboot集成fastdfs上传与下载功能
前言 本节内容我们主要介绍一下如何在springboot项目中集成fastdfs组件,实现文件的上传与下载。关于fastdfs服务中间键的安装过程,本节内容不做介绍。fastdfs是一个轻量级的分布式文件系统,也是我们文件存储中常常使用的组件之一,…...
linux好用命令+vs快捷键
linux好用命令 功能指令跳转到vim界面的最后一行shift键g复制当前路径下所有文件和目录(加-r才行)到target目录cp -r * /home/target删除指定文件rm -rf test.txt文件重命名(-i交互式提示)mv -i file1 file2移动某个内容…...
Git 构建分布式版本控制系统
版本控制概念Gitlab部署1.版本控制概念 1.1分类 (一)1 本地版本控制系统(传统模式) (二)2 集中化的版本控制系统 CVS、Subversion(SVN) (三)3 分布式…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
