基于粒子群优化算法的分布式电源选址与定容【多目标优化】【IEEE33节点】(Matlab代码实现)
目录
💥1 概述
1.1 目标函数
2.2 约束条件
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
分布式电源接入配电网,实现就地消纳,可以提高新能源的利用率、提高电能质量和降低系统网损。然而接入点位置和电源的容量的差异对配电网的影响不同,如果位置和容量不合适,可能会导致系统中某处的电压越限、总系统的网损增加。因此在电源规划阶段分析分布式电源接入点的位置和容量十分有必要。分布式电源接入点和接入容量的选择问题是一个非线性、多变量、多约束的问题。目前国内外关于这方面的研究主要集中在两个方面,一是数学模型的优化,二是模型求解和算法优化。已有的诸多研究取决与分布式电源的种类,即是否只向电网提供有功功率。而且很多算法
利用准确的损耗公式,计算时需要准确阻抗矩阵和雅可比矩阵,计算效率低。因此针对不同大小、复杂性,有待于找出一种适用于所有情况的方法。本文提出了一种确定分布式电源的最佳容量和位置的分析,该方法计算效率高,适用范围广。
1.1 目标函数
(1)以系统有功网损最小和电压偏差最小建立多目标优化数学模型,其目标函数为:

式中:N为支路总数;Pi和Qi分别为第i条支路的有功与无功功率;Ui为第i条支路的末端节点电压;Ri为第i条支路的电阻;ki为第i条支路的开关状态,0代表断开,1代表闭合;f1为总有功损耗。t为节点编号;k为节点总数;Uts、UtN分别表示第t个节点的实际电压与额定电压;f2表示电压偏移量。
(2)光伏消纳量增加通常也会引起网络损耗的增加,为真实体现系统中光伏的有效消纳,在此将光伏实际消纳量与系统网络损耗的差值定义为有效消纳量Ec如下:

式中:T 为重构周期时段数;H为接入分布式光伏电源的节点数;PC(i,t )为节点i在t时段实际消纳的分布式光伏有功功率;K为配电网中的闭合支路数;Ptk、Qtk和Utk分别为支路k 在t时段的有功功率、无功功率和电压;rk为支路k的电阻。
光伏设备出力PPV如下:

其中,E 为光伏电池板数;PS(t,e )为第e个光伏电池板在t时段实际可发功率的标幺值;htmax为在t时段光照强度的最大值;Ae、ηe分别为第e个光伏电池板的面积和光电转换效率。
为了表征有效消纳量与光伏设备出力的关系,并使优化模型更为简便,将光伏设备出力和光伏有效消纳量比值定义为函数f3。则f3越小证明消纳效果越好,最小化目标函数为:

优化调度模型的目标函数F由3部分组合而成,如下式所示:

2.2 约束条件

优化的目标是得到5个接入节点和对应接入的容量,平衡节点1不接光伏,那么可接入光伏节点的取值范围为2-33;容量范围为0-2MW,步长为0.1MW
📚2 运行结果




部分代码:
Ppv=sum(x(6:10))*0.1;%光伏消纳总量
f1=P1*SB;%总损耗
f2=sum(abs(U-1));%电压偏差
w1=100;w2=100;w3=1;
Ec=Ppv-f1;
f3=Ppv/Ec;
F=w1*f1+w2*f2+w3*f3+KU*SU+KI*SI;
disp('网损/kW')
f1*1000
disp('电压偏差/pu:')
f2
disp('出力消纳比为:')
f3
....
xlabel('迭代次数');
ylabel('目标函数值');
title('迭代收敛图')
hold on;
grid on;
disp('光伏接入点为:')
BestSol1.Position(1:5)
disp('对应接入容量为/MW:')
BestSol1.Position(6:10)*0.1
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]孙博伟.配电网中分布式能源的选址与定容方法[J].电力勘测设计,2016(01):61-64.DOI:10.13500/j.cnki.11-4908/tk.2016.01.014.
[2]孙博伟.配电网中分布式能源的选址与定容方法[J].电力勘测设计,2016(01):61-64.DOI:10.13500/j.cnki.11-4908/tk.2016.01.014.
🌈4 Matlab代码实现
相关文章:
基于粒子群优化算法的分布式电源选址与定容【多目标优化】【IEEE33节点】(Matlab代码实现)
目录 💥1 概述 1.1 目标函数 2.2 约束条件 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 💥1 概述 分布式电源接入配电网,实现就地消纳,可以提高新能源的利用率、提高电能质量和降低系统网损…...
打卡一个力扣题目
目录 一、问题 二、解题办法一 三、解题方法二 四、对比分析 关于 ARTS 的释义 —— 每周完成一个 ARTS: ● Algorithm: 每周至少做一个 LeetCode 的算法题 ● Review: 阅读并点评至少一篇英文技术文章 ● Tips: 学习至少一个技术技巧 ● Share: 分享一篇有观点…...
【SSM—SpringMVC】 问题集锦(持续更新)
目录 1.Tomcat启动,部署工件失败 1.Tomcat启动,部署工件失败 解决:使用SpringMVC,添加Web支持,要将项目结构进行添加WEB-INF下添加lib目录,将依赖添进去...
2022年全国职业院校技能大赛(高职组)“软件测试”赛项接口测试任务书
任务七 接口测试 执行接口测试 本部分按照要求,执行接口测试;使用接口测试工具PostMan,编写脚本、配置参数、执行接口测试并且截图,截图需粘贴在接口测试总结报告中。 接口测试具体要求如下: 题目1:资产…...
Docker 如何助您成为数据科学家
一、说明 在过去的 5 年里,我听到了很多关于 docker 容器的嗡嗡声。似乎我所有的软件工程朋友都在使用它们来开发应用程序。我想弄清楚这项技术如何使我更有效率,但我发现网上的教程要么太详细:阐明我作为数据科学家永远不会使用的功能&#…...
机器学习01 -Hello World(对鸢尾花(Iris Flower)进行训练及测试)
什么是机器学习? 机器学习是一种人工智能(AI)的子领域,它探索和开发计算机系统,使其能够从数据中学习和改进,并在没有明确编程指令的情况下做出决策或完成任务。 传统的程序需要程序员明确编写指令来告诉…...
android studio JNI开发
一、JNI的作用: 1.使Java与本地其他类型语言(C、C)交互; 2.在Java代码调用C、C等语言的代码 或者 C、C调用Java代码。 由于JAVA具有跨平台的特点,所以JAVA与本地代码的交互能力弱,采用JNI特性可以增强JA…...
CSS 高频按钮样式
矩形与圆角按钮 正常而言,我们遇到的按钮就这两种 -- 矩形和圆角: 它们非常的简单,宽高和圆角和背景色。 <div classbtn rect>rect</div><div classbtn circle>circle</div>.btn {margin: 8px auto;flex-shrink: 0;…...
系列二、RocketMQ简介
一、概述 RocketMQ是一款阿里巴巴开源的消息中间件。2016年11月28日,阿里巴巴向Apache软件基金会捐赠RabbitMQ,成为Apache孵化项目。2017年9月25日,Apache宣布RocketMQ孵化成为Apache顶级项目(TLP),成为国内…...
论文笔记--Skip-Thought Vectors
论文笔记--Skip-Thought Vectors 1. 文章简介2. 文章概括3 文章重点技术3.1 Skip Thought Vectors3.2 词表拓展 4. 文章亮点5. 原文传送门6. References 1. 文章简介 标题:Skip-Thought Vectors作者:Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Rich…...
1400*B. Karen and Coffee
Examples input 3 2 4 91 94 92 97 97 99 92 94 93 97 95 96 90 100 output 3 3 0 4 input 2 1 1 1 1 200000 200000 90 100 output 0 解析: 题意为,给你多个区间(会有重叠),每个区间的每个值都会为这个值累加…...
【业务功能篇54】Springboot项目常用工具类:HTTP状态码/客户端request
状态码常量类 /*** 返回状态码**/ public class HttpStatus {/*** 操作成功*/public static final int SUCCESS 200;/*** 对象创建成功*/public static final int CREATED 201;/*** 请求已经被接受*/public static final int ACCEPTED 202;/*** 操作已经执行成功࿰…...
Fine Logic
登录—专业IT笔试面试备考平台_牛客网 题目大意:有n个数分别为1~n,有m个数值对(u,v)表示u要排在v左边,问至少要多少个排列才能满足所有数值对至少一次 2<n<1e6;1<m<1e6 思路:如果数值对中要求u在v左边,…...
Neo4j图数据基本操作
Neo4j 文章目录 Neo4jCQL结点和关系增删改查匹配语句 根据标签匹配节点根据标签和属性匹配节点删除导入数据目前的问题菜谱解决的问题 命令行窗口 neo4j.bat console 导入rdf格式的文件 :GET /rdf/ping CALL n10s.graphconfig.init(); //初始化 call n10s.rdf.import.fetch(&q…...
前端JavaScript面试100问(中)
31、http 的理解 ? HTTP 协议是超文本传输协议,是客户端浏览器或其他程序“请求”与 Web 服务器响应之间的应用层通信协议。HTTPS主要是由HTTPSSL构建的可进行加密传输、身份认证的一种安全通信通道。32、http 和 https 的区别 ? 1、https协议需要到ca申请证书&…...
Docker 安全及日志管理与https部署
容器的安全性问题的根源在于容器和宿主机共享内核。如果容器里的应用导致Linux内核崩溃,那么整个系统可能都会崩溃。与虚拟机是不同的,虚拟机并没有与主机共享内核,虚拟机崩溃一般不会导致宿主机崩溃。 Docker 容器与虚拟机的区别 虚拟机通…...
2.3 HLSL常用函数
一、函数介绍 函数图像参考网站:Graphtoy 1.基本数学运算 函数 含义 示例图 min(a,b) 返回a、b中较小的数值 mul(a,b) 两数相乘用于矩阵计算 max(a,b) 返回a、b中较大的数值 abs(a) 返回a的绝对值 round(x) 返回与x最近的整数 sqrt(x) 返回x的…...
互联网的发展
概述 互联网是现代社会中举足轻重的一个领域,它的发展对于人类的生活和工作方式产生了深远的影响。互联网的发展经历了几个阶段,从初创阶段到如今的高度普及和深入应用,本文将详细介绍互联网的发展状况。 第一阶段:互联网的起源…...
STM32 CAN通讯实验程序
目录 STM32 CAN通讯实验 CAN硬件原理图 CAN外设原理图 TJA1050T硬件描述 实验线路图 回环实验 CAN头文件配置 CAN_GPIO_Config初始化 CAN初始化结构体 CAN筛选器结构体 接收中断优先级配置 接收中断函数 main文件 实验现象 补充 STM32 CAN通讯实验 CAN硬件原理图…...
Python代码片段之Django静态文件URL的配置
首先要说明这段python代码并不完整,而且我也没有做过测试,只是我在工作时参考了其中的一些个方法。这是我在找python相关源码资料里看到的一段代码,是Django静态文件URL配置代码片段2,代码中有些方法还是挺技巧的,做其…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

