基于机器学习的情绪识别算法matlab仿真,对比SVM,LDA以及决策树
目录
1.算法理论概述
2.部分核心程序
3.算法运行软件版本
4.算法运行效果图预览
5.算法完整程序工程
1.算法理论概述
情绪识别是一种重要的情感分析任务,旨在从文本、语音或图像等数据中识别出人的情绪状态,如高兴、悲伤、愤怒等。本文介绍一种基于机器学习的情绪识别算法,使用三种常见的分类算法:支持向量机(SVM)、线性判别分析(LDA)和决策树,通过对比这三种算法在情绪识别任务上的性能,选取最优的算法进行情绪识别。所有算法均在MATLAB环境下进行仿真实验。
该算法的主要步骤如下:
第一步:数据预处理
从情绪数据库中加载情绪样本数据,对数据进行预处理,包括分词、去除停用词、词干提取等文本处理技术。将文本数据转换为数值特征向量,以便于后续的机器学习算法处理。
第二步:特征提取
使用文本数据的数值特征向量作为输入,选择适当的特征提取方法,将高维的特征向量降维至较低维度,以减少特征维度并保留主要信息。
第三步:训练分类器
将降维后的特征向量和对应的情绪标签作为训练集,使用SVM、LDA和决策树等分类算法训练分类器模型。
第四步:测试和评估
将剩余的样本数据作为测试集,利用训练好的分类器对测试集进行情绪识别。使用准确率、精确率、召回率和F1-score等指标对三种算法的性能进行评估和对比,选取性能最优的算法进行情绪识别。
支持向量机(SVM)的分类函数 分类函数:

线性判别分析(LDA)的分类函数 分类函数:

决策树的分类函数。
分类函数采用多个决策节点和叶子节点组成的树结构,每个节点通过阈值判断输入特征是否满足条件,并决定下一步的判断方向。
基于机器学习的情绪识别算法,通过对比SVM、LDA和决策树在情绪识别任务上的性能,选取最优的算法进行情绪识别。该算法可用于文本、语音和图像等情感数据的分类和识别,具有较好的通用性和适用性。在实际应用中,可以根据具体情况对算法进行参数调优,进一步提高情绪识别性能和效率。通过不断优化和改进,该算法有望在情感分析领域取得更好的成果。
2.部分核心程序
.........................................................% 从Excel文件'Atrain.xlsx'中读取全部训练数据
[S1] = xlsread('Atrain.xlsx','Sheet3');% 全部训练数据的特征
[~,em1] = xlsread('Atrain.xlsx','Sheet3','N2:N141');% 全部训练数据的真实标签
Xnew3 = S1(1:end,1:13);% 使用训练好的SVM分类器对待分类数据进行预测label = predict(svmStruct,Xnew); % 预测结果
label3 = predict(svmStruct,Xnew3); % 对全部训练数据进行预测
% 计算分类准确率
e=0;
.......................................................% 生成一组坐标点[x1,y1,z1] = meshgrid(0:0.1:8,0:0.1:8,0:0.1:8);x1 = x1(:);y1 = y1(:);z1 = z1(:);xdata1 = T(1:140,11:13);svmStruct1 = fitcecoc(xdata1,group);label1 = predict(svmStruct1,[x1 y1 z1]);% 对一组坐标点进行预测
% 绘制不同情感区域的图像figure;gscatter(x1,y1,label1,'mrgb','.*o');title('不同情绪的区域');% 绘制分类结果
figure;
hold on;
gscatter(T(1:140,1), T(1:140,2),id,'krgb','s*o');% 绘制训练数据的散点图
gscatter(Xnew(:,1),Xnew(:,2),label,'krgb','X');% 绘制测试数据的分类结果
title('训练和测试点情绪分类');
hold off
temp=0;
0026
3.算法运行软件版本
MATLAB2022a
4.算法运行效果图预览

5.算法完整程序工程
OOOOO
OOO
O
相关文章:
基于机器学习的情绪识别算法matlab仿真,对比SVM,LDA以及决策树
目录 1.算法理论概述 2.部分核心程序 3.算法运行软件版本 4.算法运行效果图预览 5.算法完整程序工程 1.算法理论概述 情绪识别是一种重要的情感分析任务,旨在从文本、语音或图像等数据中识别出人的情绪状态,如高兴、悲伤、愤怒等。本文介绍一种基于…...
jMeter使用随记
参数化BodyData 先制作参数文件 再设置一个csv data set config 最后在body data里面写上参数${xxxxx}...
[语义分割] DeepLab v3(Cascaded model、ASPP model、两种ASPP对比、Multi-grid、训练细节)
Rethinking Atrous Convolution for Semantic Image Segmentation 论文地址:Rethinking Atrous Convolution for Semantic Image SegmentationPytorch 实现代码:pytorch_segmentation/deeplab_v3 这是一篇 2017 年发表在CVPR上的文章。相比 DeepLab V2 有…...
css - Media Query
使用bootstrap的grid system可以在一个较为粗糙的范围得到较好的响应性,但是通过viewport可以看到网站在具体哪个像素点处变得丑陋,再通过css media query来精细调整网页布局。 可以通过media query来提高网页移动响应能力。...
9.python设计模式【外观模式】
内容:为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一个子系统更加容易使用。 角色: 外观(facade)子类系统(subsystem classes) UML图 举…...
Webpack5 CopyPlugin的作用
在Webpack 5中,CopyPlugin是一个插件,用于将文件或目录从源位置复制到构建目录中。它的作用是帮助开发人员在构建过程中将静态文件(如图片、字体等)直接复制到输出目录,而无需经过任何处理。 CopyPlugin并不是必须的&…...
kafka服务端允许生产者发送最大消息体大小
1、kafka config服务端配置文件server.properties server.properties中加上的message.max.bytes配置,我目前设置为5242880,即5MB,可以根据实际情况增大。 message.max.bytes5242880 在生产者端配置max.request.size,这是单个消息…...
台阶型Nim游戏博弈论
台阶型Nim游戏 题目 https://www.acwing.com/problem/content/894/ 现在,有一个 n n n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i i i 级台阶上有 a i a_i ai 个石子( i ≥ 1 i \ge 1 i≥1)。 两位玩家轮流操作,每…...
NestJS 的 中间件 学习
基本概念 中间件是在路由处理程序之前调用的函数。中间件函数可以访问请求和响应对象。在程序中我们可以让多个中间件串起来一起使用,当多个中间件一起使用时我们可以使用next()调用下一个中间件。 中间件主要是可以实现如下功能: 执行任何代码更改请…...
搭建自己第一个golang程序
概念: golang 和 java有些类似,配置好环境就可以直接编写运行了;这里分两种: 一.shell模式 创建一个go类型的文件 往里面编写代码 二.开发工具模式 这里的开发工具 我选用goland package mainimport "fmt"func mai…...
Mysql加锁过程
1、背景 MySQL/InnoDB的加锁分析,一直是一个比较困难的话题。我在工作过程中,经常会有同事咨询这方面的问题。同时,微博上也经常会收到MySQL锁相关的私信,让我帮助解决一些死锁的问题。本文,准备就MySQL/InnoDB的加锁问…...
财经界杂志财经界杂志社财经界编辑部2023年第19期目录
《财经界》投稿邮箱:cnqikantg126.com(注明投稿“《财经界》”) ●崔编辑Q Q :695548262 微信号:f99832970 名刊名著_国内外名刊名著 财经名刊名著 李少鹏 ;王海蕴; 6-7 发改委专线 六方面发力 看中国经济形势,既要看准当…...
Linux常用命令——dpkg-split命令
在线Linux命令查询工具 dpkg-split Debian Linux中将大软件包分割成小包 补充说明 dpkg-split命令用来将Debian Linux中的大软件包分割成小软件包,它还能够将已分割的文件进行合并。 语法 dpkg-split(选项)(参数)选项 -S:设置分割后的每个小文件最…...
常见的二十种软件测试方法详解
一.单元测试(模块测试) 单元测试是对软件组成单元进行测试。其目的是检验软件组成单位的正确性。测试对象是:模块。 对模块进行测试,单独的一个模块测试,属于静态测试的一类 测试阶段:编码后或者编码前&…...
Python(一)
要做到坚韧不拔,最要紧的是坚持到底。——陀思妥耶夫斯基 2023 6 14~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --根据你自己的操作系统下载对应的。 -- pyhton 文档 --交互方式 使用的工具 --如何启动工具 -- 交互式方式一般在数据分析中…...
git pull无效,显示 * branch master -> FETCH_HEADAlready up to date. pull无效解决方法
报错情况 本地文件夹中删除文件后,git pull无效。显示如下: **** MINGW64 ~/****/haha (master) $ git pull origin master From https://gitee.com/****/haha* branch master -> FETCH_HEAD Already up to date.解决 方法一 命令…...
SK5代理与socks5代理
第一部分:SK5代理与socks5代理的原理与功能 SK5代理 SK5代理是一种加密代理技术,其工作原理主要包括以下几个关键步骤: 代理服务器接收客户端请求;客户端与代理服务器之间建立加密连接;代理服务器将客户端的请求转发…...
【【51单片机红外遥控小风车】】
51单片机红外遥控小风车 今天结束了51单片机的学习,明天开始学习stm32 我是学习江科大的视频一步一步完成的 ,他讲的非常好,非常好 特别通俗易懂 学习复刻他的作品我也自己创作了一些 但是现在暂时脱离这块板子了 以后可能会更新一个应用51单…...
如何连接远程服务器?快解析内内网穿透可以吗?
如今我们迎来了数字化转型的时代,众多企业来为了更好地推动业务的发展,常常需要在公司内部搭建一个远程服务器。然而,对于企业员工来说,在工作过程中经常需要与这个服务器进行互动,而服务器位于公司的局域网中…...
【云边有个小卖部】上新《探秘Linux》第三章 Linux 软件包管理器 yum
🕺作者: 主页 我的专栏C语言从0到1C初阶C进阶数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
Android写一个捕获全局异常的工具类
项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
