当前位置: 首页 > news >正文

目标检测之3维合成

现在有一系列的图片,图片之间可以按照z轴方向进行排列。图片经过了目标检测,输出了一系列的检测框,现在的需求是将检测框按类别进行合成,以在3维上生成检测结果。

思路:将图片按照z轴方向排列,以z轴索引作为检测框的z值。等同于输入为(x, y, w, h, z, class_id),可以计算得到每个检测框的中心点来标定这个框(x_center, y_center, z, class_id)。

然后可以通过聚类算法在4维空间上进行聚类,最后取出聚类出的每一类的点的xyz的最大值与最小值和class_id来生成聚类结果[x_min, y_min, z_min, x_max, y_max, z_max, class_id]。

代码展示:

from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as npclass BBoxClusterv3:def __init__(self, bbox_list):self.bbox_list = bbox_listself.clustering = None# self.color_map = plt.cm.get_cmap('hsv', len(set([bbox[5] for bbox in bbox_list])))def cluster(self, eps=100, min_samples=2):X = [[bbox[0]+bbox[2]/2, bbox[1]+bbox[3]/2, bbox[4], bbox[5]] for bbox in self.bbox_list]  # 中心点的x,y,z坐标和类别ID# breakpoint()self.clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(X)def get_new_bbox_list(self):# self.cluster()labels = self.clustering.labels_print("聚类出的类别:",labels)new_bbox_list = []for label in set(labels):if label != -1:  # Ignore noiseidxs = np.where(labels == label)[0]print("每一类的bboxes索引: ",idxs)bboxes = np.array(self.bbox_list)[idxs]print("每一类的bboxes集合: ",bboxes)x_min = np.min(bboxes[:, 0])y_min = np.min(bboxes[:, 1])x_max = np.max(bboxes[:, 0] + bboxes[:, 2])y_max = np.max(bboxes[:, 1] + bboxes[:, 3])z_min = np.min(bboxes[:, 4])z_max = np.max(bboxes[:, 4])class_id = bboxes[0, 5]new_bbox_list.append([x_min, y_min, z_min, x_max, y_max, z_max, class_id])return new_bbox_listdef draw_bbox_2d(self, bbox, ax):x_min, y_min, w, h, z, class_id = bboxcolor = self.color_map(class_id)# print(color)for xi in [x_min, x_min+w]:for yi in [y_min, y_min+h]:ax.plot([xi, xi], [yi, yi], [z, z], color=color, linestyle='dashed')for xi in [x_min, x_min+w]:ax.plot([xi, xi], [y_min, y_min+h], [z, z], color=color, linestyle='dashed')for yi in [y_min, y_min+h]:ax.plot([x_min, x_min+w], [yi, yi], [z, z], color=color, linestyle='dashed')def draw_bbox_3d(self, bbox, ax):x_min, y_min, z_min, x_max, y_max, z_max, class_id = bboxcolor = self.color_map(class_id)for xi in [x_min, x_max]:for yi in [y_min, y_max]:ax.plot([xi, xi], [yi, yi], [z_min, z_max], color=color)for xi in [x_min, x_max]:for zi in [z_min, z_max]:ax.plot([xi, xi], [y_min, y_max], [zi, zi], color=color)for yi in [y_min, y_max]:for zi in [z_min, z_max]:ax.plot([x_min, x_max], [yi, yi], [zi, zi], color=color)def visualize(self, bbox_list=None, new_bbox_list=None):fig = plt.figure()ax = fig.add_subplot(111, projection='3d')for bbox in bbox_list:self.draw_bbox_2d(bbox, ax)for bbox in new_bbox_list:self.draw_bbox_3d(bbox, ax)plt.show()def draw(self):new_bbox_list = self.get_new_bbox_list()print(bbox_list,new_bbox_list)self.visualize(bbox_list, new_bbox_list)def color_map(self, class_id):# 假设这里使用映射字典将类别 ID 映射到不同的颜色color_mapping = {0: 'red', 1: 'blue', 2: 'green'}return color_mapping.get(class_id, 'black')  # 默认为黑色if __name__ == "__main__":bbox_list = [#-------------------------##[x, y, w, h, z, class_id]##-------------------------#[100, 200, 50, 50, 0, 0],[110, 210, 50, 50, 1, 0],[120, 220, 50, 50, 2, 0],[130, 230, 50, 50, 3, 0],[140, 240, 50, 50, 4, 0],[200, 300, 60, 60, 0, 1],[210, 310, 60, 60, 1, 1],[220, 320, 60, 60, 2, 1],[300, 400, 70, 70, 6, 0],[310, 410, 70, 70, 7, 0],[320, 420, 70, 70, 8, 0],[400, 500, 80, 80, 9, 1],[410, 510, 80, 80, 10, 1],[420, 520, 80, 80, 11, 2]]bbox_cluster = BBoxClusterv3(bbox_list)bbox_cluster.cluster()bbox_cluster.draw()

假如有以下几类框

最终聚类效果:

 

相关文章:

目标检测之3维合成

现在有一系列的图片,图片之间可以按照z轴方向进行排列。图片经过了目标检测,输出了一系列的检测框,现在的需求是将检测框按类别进行合成,以在3维上生成检测结果。 思路:将图片按照z轴方向排列,以z轴索引作…...

【playbook】Ansible的脚本----playbook剧本

Ansible的脚本----playbook剧本 1.playbook剧本组成2.playbook剧本实战演练2.1 实战演练一:给被管理主机安装Apache服务2.2 实战演练二:使用sudo命令将远程主机的普通用户提权为root用户2.3 实战演练三:when条件判断指定的IP地址2.4 实战演练…...

PySpark基本操作:如何查看源码

方法一: from pyspark.mllib.tree import GradientBoostedTrees import inspectsource_code inspect.getsource(GradientBoostedTrees) print(source_code) 方法二: GradientBoostedTrees — PySpark 3.4.1 documentation (apache.org) 在官网中&…...

HCIP——OSPF的防环机制

OSPF的防环机制 一、域间防环二、域内防环有向图转化1、有向图的画法2、示例: 三、SPF算法 OSPF将整个OSPF域划分为多个区域,区域内部通过拓扑信息计算路由,区域间传递路由信息,实现全网可达。OSPF防环机制主要是体现在域内防环和…...

安全基础 --- 正则表达式

正则表达式是表达文本模式的方法 正则表达式(Regular Expression),简称为正则或Regex,是一个用来描述、匹配和操作字符串的工具。 (1)限定字符 限定字符多用于重复匹配次数 常用限定字符: 语…...

【vue】vue面试高频问题之-$nextTick的作用和使用场景

nextTick的作用和使用场景 vue中的nextTick主要用于处理数据动态变化后,DOM还未及时更新的问题,用nextTick就可以获取数据更新后最新DOM的变化 api文档 Vue.nextTick( [callback, context] ) 参数: {Function} [callback]{Object} [context]…...

MySQL学习笔记之SQL语句执行过程查看

文章目录 参数使能查看最近一条SQL执行过程查看profiling打开开后,所有SQL语句执行耗时查看某一条SQL的执行过程指定要查看的性能选项查看所有性能选项 参数使能 以select语句为例,首先打开profile参数: mysql> set profiling 1; Query…...

如何以毫秒精度,查看系统时间以及文件的创建时间

用 cmd 查看系统的时间: powershell -command "(Get-Date -UFormat %Y-%m-%d %H:%M:%S).toString() . ((Get-Date).millisecond)" 用 XYplorer 查看文件的精确创建时间(含30天试用): XYplorer - File Manager for …...

基于机器学习的情绪识别算法matlab仿真,对比SVM,LDA以及决策树

目录 1.算法理论概述 2.部分核心程序 3.算法运行软件版本 4.算法运行效果图预览 5.算法完整程序工程 1.算法理论概述 情绪识别是一种重要的情感分析任务,旨在从文本、语音或图像等数据中识别出人的情绪状态,如高兴、悲伤、愤怒等。本文介绍一种基于…...

jMeter使用随记

参数化BodyData 先制作参数文件 再设置一个csv data set config 最后在body data里面写上参数${xxxxx}...

[语义分割] DeepLab v3(Cascaded model、ASPP model、两种ASPP对比、Multi-grid、训练细节)

Rethinking Atrous Convolution for Semantic Image Segmentation 论文地址:Rethinking Atrous Convolution for Semantic Image SegmentationPytorch 实现代码:pytorch_segmentation/deeplab_v3 这是一篇 2017 年发表在CVPR上的文章。相比 DeepLab V2 有…...

css - Media Query

使用bootstrap的grid system可以在一个较为粗糙的范围得到较好的响应性,但是通过viewport可以看到网站在具体哪个像素点处变得丑陋,再通过css media query来精细调整网页布局。 可以通过media query来提高网页移动响应能力。...

9.python设计模式【外观模式】

内容:为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一个子系统更加容易使用。 角色: 外观(facade)子类系统(subsystem classes) UML图 举…...

Webpack5 CopyPlugin的作用

在Webpack 5中,CopyPlugin是一个插件,用于将文件或目录从源位置复制到构建目录中。它的作用是帮助开发人员在构建过程中将静态文件(如图片、字体等)直接复制到输出目录,而无需经过任何处理。 CopyPlugin并不是必须的&…...

kafka服务端允许生产者发送最大消息体大小

1、kafka config服务端配置文件server.properties server.properties中加上的message.max.bytes配置,我目前设置为5242880,即5MB,可以根据实际情况增大。 message.max.bytes5242880 在生产者端配置max.request.size,这是单个消息…...

台阶型Nim游戏博弈论

台阶型Nim游戏 题目 https://www.acwing.com/problem/content/894/ 现在,有一个 n n n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i i i 级台阶上有 a i a_i ai​ 个石子( i ≥ 1 i \ge 1 i≥1)。 两位玩家轮流操作,每…...

NestJS 的 中间件 学习

基本概念 中间件是在路由处理程序之前调用的函数。中间件函数可以访问请求和响应对象。在程序中我们可以让多个中间件串起来一起使用,当多个中间件一起使用时我们可以使用next()调用下一个中间件。 中间件主要是可以实现如下功能: 执行任何代码更改请…...

搭建自己第一个golang程序

概念: golang 和 java有些类似,配置好环境就可以直接编写运行了;这里分两种: 一.shell模式 创建一个go类型的文件 往里面编写代码 二.开发工具模式 这里的开发工具 我选用goland package mainimport "fmt"func mai…...

Mysql加锁过程

1、背景 MySQL/InnoDB的加锁分析,一直是一个比较困难的话题。我在工作过程中,经常会有同事咨询这方面的问题。同时,微博上也经常会收到MySQL锁相关的私信,让我帮助解决一些死锁的问题。本文,准备就MySQL/InnoDB的加锁问…...

财经界杂志财经界杂志社财经界编辑部2023年第19期目录

《财经界》投稿邮箱:cnqikantg126.com(注明投稿“《财经界》”) ●崔编辑Q Q :695548262 微信号:f99832970 名刊名著_国内外名刊名著 财经名刊名著 李少鹏 ;王海蕴; 6-7 发改委专线 六方面发力 看中国经济形势,既要看准当…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

Robots.txt 文件

什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...