php-golang-rpc jsonrpc和php客户端tivoka/tivoka包实践
golang 代码:
package main
import (
"fmt"
"net"
"net/rpc"
"net/rpc/jsonrpc"
)
type App struct{}
type Res struct {
Code int `json:"code"`
Msg string `json:"msg"`
Data any `json:"data"`
}
func (*App) Hi(mp map[string]any, res *Res) error {
res.Code = 200
res.Msg = "成功"
var rmp = make(map[string]any, 0)
if v, ok := mp["name"].(string); ok {
rmp["name"] = "my name is " + v
} else {
rmp["name"] = "my name is unknown"
}
res.Data = rmp
return nil
}
func main() {
ln, err := net.Listen("tcp", ":6001")
if err != nil {
panic(err)
}
rpc.Register(new(App))
for {
conn, err := ln.Accept()
if err != nil {
continue
}
go func(conn net.Conn) {
fmt.Println("new client")
jsonrpc.ServeConn(conn)
}(conn)
}
}
/******************************************************/
php代码:
composer require tivoka/tivoka
<?php
namespace app\index\controller;
use app\BaseController;
use think\facade\View;
use Tivoka\Client;
class Index extends BaseController
{
public function index()
{
//tcp
$connection = Client::connect(array('host' => '127.0.0.1', 'port' => 6001));
$connection->useSpec('1.0');
$request = $connection->sendRequest('App.Hi', array(['name'=>'ceshi222']));
dd($request->result);
}
}

错误排查:
on: cannot unmarshal string into Go value of type [1]interface {}
使用jsonrpc的时候报以上两个错误,一个是因为
{
"id": 1000,
"method": "Arith.Divide",
"params": "[{A:9,B:2}]"
}
一个是因为
{
"id": 1000,
"method": "Arith.Divide",
"params": {
"A": 9,
"B": 2
}
}
正确的应该是

php端需要多加一层数组:
{
"id": 1000,
"method": "Arith.Divide",
"params": [{
"A": 9,
"B": 2
}]
}
相关文章:
php-golang-rpc jsonrpc和php客户端tivoka/tivoka包实践
golang 代码: package main import ( "fmt" "net" "net/rpc" "net/rpc/jsonrpc" ) type App struct{} type Res struct { Code int json:"code" Msg string json:"msg" Data any json:"…...
flutter 打包iOS安装包
flutter iOS Xcode打包并导出ipa文件安装包 1、 Xcode配置 1、 启动打包 1、 等待打包 1、 打包完成、准备导出ipa 1、 选择模式 1、 选择配置文件 1、 导出 1、 选择导出位置 1、 得到ipa...
二进制重排
二进制重排作用 二进制重排的主要目的是将连续调用的函数连接到相邻的虚拟内存地址,这样在启动时可以减少缺页中断的发生,提升启动速度。目前网络上关于ios应用启动优化,通过XCode实现的版本比较多。MacOS上的应用也是通过clang进行编译的&am…...
【Linux后端服务器开发】MAC地址与其他重要协议
目录 一、以太网 二、MAC地址 三、MTU 四、ARP协议 五、DNS系统 六、ICMP协议 七、NAT技术 八、代理服务器 一、以太网 “以太网”不是一种具体的网路,而是一种技术标准:既包含了数据链路层的内容,也包含了一些物理层的内容…...
WebGPU入门
1. 引言 前序博客: CUDA入门WebGPUZKP:客户端证明 WebGPU——Draft 2023.7.17 由苹果、谷歌、Mozilla团队发起,当前处于草稿阶段,旨在成为W3C推荐标准。 WebGPU为 在图形处理单元(GPU)上执行诸如渲染和…...
React Dva项目中.roadhogrc.mock.js直接自动导入mock目录下所有文件方式
上文 React Dva项目中模仿网络请求数据方法 中,我们书写了Dva项目模拟后端数据的方式 但是 我们.roadhogrc.mock.js中的这个处理其实并不好用 我们还需要一个一个的引入 我们可以直接靠一段代码 import fs from fs; import path from path; const mock {} fs.re…...
跨境独立站如何应对恶意网络爬虫?
目录 跨境出海独立站纷纷成立 爬虫威胁跨境电商生存 如何有效识别爬虫? 技术反爬方案 防爬虫才能保发展 中国出海跨境电商业务,主要选择大平台开设店铺,例如,亚马逊、eBay、Walmart、AliExpress、Zalando等。随着业务的扩大&…...
C# SourceGenerator 源生成器初探
简介 注意: 坑极多。而且截至2023年,这个东西仅仅是半成品 利用SourceGenerator可以在编译结束前生成一些代码参与编译,比如编译时反射之类的,还有模板代码生成都很好用。 演示仓库传送门-Github-yueh0607 使用 1. 创建项目 …...
网络安全/信息安全—学习笔记
一、网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域,都有攻与防两面…...
【Visual Studio】无法打开包括文件: “dirent.h”: No such file or directory
VS2017/2019 无法打开包括文件: “dirent.h”: No such file or directory 1 “dirent.h”: No such file or directory 在windows下的VS2017/2019编译器中,发现无法打开“dirent.h”,主要是MSVC并没有实现这个头文件,但是在Linux这个头文件…...
asp.net MVC markdown编辑器
在 ASP.NET MVC 中,你可以使用一些第三方 Markdown 编辑器来让用户在网页上方便地编辑和预览 Markdown 内容。这些编辑器通常提供实时预览功能,将 Markdown 文本转换为实时渲染的 HTML,并支持编辑器工具栏来辅助用户编辑。 以下是一些流行的…...
论文浅尝 | 预训练Transformer用于跨领域知识图谱补全
笔记整理:汪俊杰,浙江大学硕士,研究方向为知识图谱 链接:https://arxiv.org/pdf/2303.15682.pdf 动机 传统的直推式(tranductive)或者归纳式(inductive)的知识图谱补全(KGC)模型都关注于域内(in-domain)数据,而比较少关…...
算法工程师-机器学习面试题总结(2)
线性回归 线性回归的基本思想是? 线性回归是一种用于建立和预测变量之间线性关系的统计模型。其基本思想是假设自变量(输入)和因变量(输出)之间存在线性关系,通过建立一个线性方程来拟合观测数据ÿ…...
低成本32位单片机空调内风机方案
空调内风机方案主控芯片采用低成本32位单片机MM32SPIN0230,内部集成了具有灵动特色的电机控制功能:高阶4路互补PWM、注入功能的高精度ADC、轨到轨运放、轮询比较器、32位针对霍尔传感器的捕获时钟、以及硬件除法器和DMA等电机算法加速引擎。 该方案具有…...
读发布!设计与部署稳定的分布式系统(第2版)笔记25_互联层之路由和服务
1. 控制请求数量 1.1. 这个世界可以随时摧毁我们的系统 1.1.1. 要么拒绝工作 1.1.2. 要么扩展容量 1.1.3. 没有人会在与世隔绝的环境中使用服务,现在的服务大多必须处理互联网规模的负载 1.2. 系统的每次失效,都源自某个等待队列 1.3. 每个请求都会…...
AI面试官:LINQ和Lambda表达式(二)
AI面试官:LINQ和Lambda表达式(二) 当面试官面对C#中关于LINQ和Lambda表达式的面试题时,通常会涉及这两个主题的基本概念、用法、实际应用以及与其他相关技术的对比等。以下是一些可能的面试题目,附带简要解答和相关案…...
Mysql原理篇--第二章 索引
文章目录 前言一、mysql的索引是什么?1.1 索引的结构:1.2 b树特性:1.3 b树每个节点的结构:1.4 b树 键值的大小排序:1.4 b树 存储(InnoDB): 二、索引类型2.1 主要的索引类型ÿ…...
保姆级系列教程-玩转Fiddler抓包教程(1)-HTTP和HTTPS基础知识
1.简介 有的小伙伴或者童鞋们可能会好奇地问,不是讲解和分享抓包工具了怎么这里开始讲解HTTP和HTTPS协议了。这是因为你对HTTP协议越了解,你就能越掌握Fiddler的使用方法,反过来你越使用Fiddler,就越能帮助你了解HTTP协议。 Fid…...
【iOS】单例、通知、代理
1 单例模式 1.1 什么是单例 单例模式在整个工程中,相当于一个全局变量,就是不论在哪里需要用到这个类的实例变量,都可以通过单例方法来取得,而且一旦你创建了一个单例类,不论你在多少个界面中初始化调用了这个单例方…...
从Vue2到Vue3【五】——新的组件(Fragment、Teleport、Suspense)
系列文章目录 内容链接从Vue2到Vue3【零】Vue3简介从Vue2到Vue3【一】Composition API(第一章)从Vue2到Vue3【二】Composition API(第二章)从Vue2到Vue3【三】Composition API(第三章)从Vue2到Vue3【四】C…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
