当前位置: 首页 > news >正文

简单的知识图谱可视化+绘制nx.Graph()时报错TypeError: ‘_AxesStack‘ object is not callable

绘制nx.Graph时报错TypeError: '_AxesStack' object is not callable

  • 写在最前面
    • 知识图谱可视化
    • 预期
    • 报错
    • 可能的原因
  • 原代码
  • 原因确认
  • 解决后的代码
  • 解决!

写在最前面

实现一个简单的知识图谱的可视化功能。
使用了NetworkX库来构建知识图谱,并使用matplotlib库来绘制图形。

过几天将发布关于#通过noe4j可视化知识图谱#的文章
细节上还在优化

题外话,构建知识图谱真的好慢啊,尤其是自动构建实体之间的关系,代码要跑好久好久
而且不算论文中的创新点,感觉有点鸡肋

知识图谱可视化

知识图谱可视化是将知识图谱的数据以图形化的方式展示出来,以便更加直观地理解、分析和探索知识图谱中的关系与信息。

可以通过交互式的图形界面,对知识图谱中的关系和概念进行探索和分析,并且能够自由地从宏观到微观地进行导航和浏览。

可以应用于搜索引擎、推荐系统、医学研究、商业智能、社交网络、金融分析等领域。

预期

绘制nx.Graph()的graph

报错

TypeError: ‘_AxesStack’ object is not callable

nx.draw(graph, pos, with_labels=True, node_size=3000, font_size=12, node_color='skyblue', font_weight='bold', alpha=0.8, linewidths=0, edge_color='gray')9 plt.title("Knowledge Graph")10 plt.show()File D:\Program\Anaconda\lib\site-packages\networkx\drawing\nx_pylab.py:113, in draw(G, pos, ax, **kwds)111 cf.set_facecolor("w")112 if ax is None:
--> 113     if cf._axstack() is None:114         ax = cf.add_axes((0, 0, 1, 1))115     else:TypeError: '_AxesStack' object is not callable<Figure size 1000x800 with 0 Axes>

可能的原因

这个错误是由于在绘制图形时调用了一个不可调用的对象 _AxesStack,通常这与与变量或函数名冲突有关。检查你的代码是否有其他地方使用了名为 pltax 的变量或函数,导致了该错误。

以下是可能导致问题的一些常见原因和解决方法:

  1. 确保 plt 是 Matplotlib 的 pyplot 对象,并且没有在其他地方被重新定义。在使用 plt 之前,可以尝试在代码的开头添加 import matplotlib.pyplot as plt

  2. 确保没有将变量名 ax 分配为 Axes 对象。Axes 对象是由 plt.subplots()plt.add_axes() 等函数返回的,因此如果使用 ax 作为一个普通变量,可能会导致冲突。

  3. 可能是代码中的其他部分修改了 Matplotlib 的默认行为,导致 AxesStack 不可调用。请检查在绘制图形之前是否有任何涉及 Matplotlib 的自定义设置或修改。

在确认以上问题之后,可以尝试修改代码,并确保绘图部分没有与之前提到的问题冲突,从而避免该错误的出现。

原代码

定义了一个名为draw_graph的函数,该函数接受一个图形对象作为参数,并在绘图中显示该图形。main函数创建了一个空的图形对象,并添加了一些节点和边。

import networkx as nx
import matplotlib.pyplot as pltdef draw_graph(graph):pos = nx.spring_layout(graph, seed=42)# 下面这行代码有问题,已修改为# fig, ax = plt.subplots(figsize=(10, 8))plt.figure(figsize=(10, 8))nx.draw(graph, pos, with_labels=True, node_size=3000, font_size=12, node_color='skyblue', font_weight='bold', alpha=0.8, linewidths=0, edge_color='gray')plt.title("Knowledge Graph")plt.show()def main():# 假设已构建好知识图谱graph = nx.Graph()graph.add_nodes_from(["Entity1", "Entity2", "Entity3"])graph.add_edges_from([("Entity1", "Entity2"), ("Entity2", "Entity3")])draw_graph(graph)if __name__ == "__main__":main()

原因确认

我遇到的是第二个原因:因为与 Matplotlib 的 Axes 对象(ax)冲突。

为了解决这个问题,尝试在绘制图形时明确指定 Axes 对象。在 plt.subplots() 中创建一个新的 Axes 对象,然后将其传递给 nx.draw() 函数。

解决后的代码

import networkx as nx
import matplotlib.pyplot as pltdef draw_graph(graph):pos = nx.spring_layout(graph, seed=42)  # You can use different layout algorithmsfig, ax = plt.subplots(figsize=(10, 8))nx.draw(graph, pos, with_labels=True, node_size=3000, font_size=12, node_color='skyblue', font_weight='bold', alpha=0.8, linewidths=0, edge_color='gray', ax=ax)ax.set_title("Knowledge Graph")plt.show()def main():# 假设已构建好知识图谱graph = nx.Graph()graph.add_nodes_from(["Entity1", "Entity2", "Entity3"])graph.add_edges_from([("Entity1", "Entity2"), ("Entity2", "Entity3")])draw_graph(graph)if __name__ == "__main__":main()

解决!

在这里插入图片描述

相关文章:

简单的知识图谱可视化+绘制nx.Graph()时报错TypeError: ‘_AxesStack‘ object is not callable

绘制nx.Graph时报错TypeError: _AxesStack object is not callable 写在最前面知识图谱可视化预期报错可能的原因 原代码原因确认解决后的代码解决&#xff01; 写在最前面 实现一个简单的知识图谱的可视化功能。 使用了NetworkX库来构建知识图谱&#xff0c;并使用matplotlib…...

【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据)

【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.分块代码5.1 fun.m5.2 main.m6.完整代码6.1 fun.m6.2 main.m7.运行结果1.模型原理 基于粒子群优化算法(Particle Swarm Optimization, PSO)优…...

【机器学习】Cost Function for Logistic Regression

Cost Function for Logistic Regression 1. 平方差能否用于逻辑回归&#xff1f;2. 逻辑损失函数loss3. 损失函数cost附录 导入所需的库 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from plt_logistic_loss import plt_logistic_cost, plt_two_…...

【EI/SCOPUS会议征稿】2023年第四届新能源与电气科技国际学术研讨会 (ISNEET 2023)

作为全球科技创新大趋势的引领者&#xff0c;中国一直在为科技创新创造越来越开放的环境&#xff0c;提高学术合作的深度和广度&#xff0c;构建惠及全民的创新共同体。这些努力为全球化和创建共享未来的共同体做出了新的贡献。 为交流近年来国内外在新能源和电气技术领域的最新…...

【计算机网络】10、ethtool

文章目录 一、ethtool1.1 常见操作1.1.1 展示设备属性1.1.2 改变网卡属性1.1.2.1 Auto-negotiation1.1.2.2 Speed 1.1.3 展示网卡驱动设置1.1.4 只展示 Auto-negotiation, RX and TX1.1.5 展示统计1.1.7 排除网络故障1.1.8 通过网口的 LED 区分网卡1.1.9 持久化配置&#xff08…...

什么是前端工程化?

工程化介绍 什么是前端工程化&#xff1f; 前端工程化是一种思想&#xff0c;而不是某种技术。主要目的是为了提高效率和降低成本&#xff0c;也就是说在开发的过程中可以提高开发效率&#xff0c;减少不必要的重复性工作等。 tip 现实生活举例 建房子谁不会呢&#xff1f;请…...

【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程

【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程 文章目录 【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程前言确定版本对应关系源码编译安装tiny-cuda-nn总结 前言 本人windows11下使用【Instant Neural Surface Reconstruction】算法时需要…...

Matlab 一种自适应搜索半径的特征提取方法

文章目录 一、简介二、实现代码参考资料一、简介 在之前的博客(C++ ID3决策树)中,提到过一种信息熵的概念,其中它表达的大致意思为:香农认为熵是指“当一件事情有多种可能情况时,这件事情发生某种情况的不确定性”,也就是指如果一个事情的不确定性越大,那么这个信息的熵…...

基于opencv的几种图像滤波

一、介绍 盒式滤波、均值滤波、高斯滤波、中值滤波、双边滤波、导向滤波。 boxFilter() blur() GaussianBlur() medianBlur() bilateralFilter() 二、代码 #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> …...

puppeteer代理的搭建和配置

puppeteer代理的搭建和配置 本文深入探讨了Puppeteer在网络爬虫和自动化测试中的重要角色&#xff0c;着重介绍了如何搭建和配置代理服务器&#xff0c;以优化Puppeteer的功能和性能。文章首先介绍了Puppeteer作为一个强大的Headless浏览器自动化工具的优势和应用场景&#xf…...

【简单认识MySQL的MHA高可用配置】

文章目录 一、简介1、概述2、MHA 的组成3&#xff0e;MHA 的特点4、MHA工作原理 二、搭建MHA高可用数据库群集1.主从复制2.MHA配置 三、故障模拟四、故障修复步骤&#xff1a; 一、简介 1、概述 MHA&#xff08;Master High Availability&#xff09;是一套优秀的MySQL高可用…...

【云原生】一文学会Docker存储所有特性

目录 1.Volumes 1.Volumes使用场景 2.持久将资源存放 3. 只读挂载 2.Bind mount Bind mounts使用场景 3.tmpfs mounts使用场景 4.Bind mounts和Volumes行为上的差异 5.docker file将存储内置到镜像中 6.volumes管理 1.查看存储卷 2.删除存储卷 3.查看存储卷的详细信息…...

Android Ble蓝牙App(一)扫描

Ble蓝牙App&#xff08;一&#xff09;扫描 前言正文一、基本配置二、扫描准备三、扫描页面① 增加UI布局② 点击监听③ 扫描处理④ 广播处理 四、权限处理五、扫描结果① 列表适配器② 扫描结果处理③ 接收结果 六、源码 前言 关于低功耗的蓝牙介绍我已经做过很多了&#xff0…...

mac pd安装ubuntu并配置远程连接

背景 一个安静的下午&#xff0c;我又想去折腾点什么了。准备学习一下k8s的&#xff0c;但是没有服务器。把我给折腾的&#xff0c;在抱怨了&#xff1a;为什么M系列芯片的资源怎么这么少。 好在伙伴说&#xff0c;你可以尝试一下ubantu。于是&#xff0c;我只好在我的mac上安…...

1.3 eureka+ribbon,完成服务注册与调用,负载均衡源码追踪

本篇继先前发布的1.2 eureka注册中心&#xff0c;完成服务注册的内容。 目录 环境搭建 采用eurekaribbon的方式&#xff0c;对多个user服务发送请求&#xff0c;并实现负载均衡 负载均衡原理 负载均衡源码追踪 负载均衡策略 如何选择负载均衡策略&#xff1f; 饥饿加载…...

mysql修改字段长度是否锁表

Varchar对于小于等于255字节以内的长度可以使用一个byte 存储。大于255个字节的长度则需要使用2个byte存储 1&#xff0c; 如果是255长度之内的扩展&#xff0c;或者255之外的扩展&#xff0c;则不锁表&#xff0c;采用in-place方式执行 2&#xff0c; 如果从varchar长度从(0,2…...

SpringCloud集成OpenTelemetry的实现

SpringCloud项目做链路追踪&#xff0c;比较常见的会集成SleuthZipKin来完成&#xff0c;但这次的需求要集成开源框架OpenTelemetry&#xff0c;这里整理下实现过程。相关文章&#xff1a; 【SpringCloud集成SleuthZipkin进行链路追踪】 【OpenTelemetry框架Trace部分整理】 …...

Python爬取IP归属地信息及各个地区天气信息

一、实现样式 二、核心点 1、语言&#xff1a;Python、HTML&#xff0c;CSS 2、python web框架 Flask 3、三方库&#xff1a;requests、xpath 4、爬取网站&#xff1a;https://ip138.com/ 5、文档结构 三、代码 ipquery.py import requests from lxml import etree # 请求…...

RedLock + Redisson

目录 2.9 RedLock2.9.1 上述实现的分布式锁在集群状态下失效的原因2.9.2 解决方式-RedLock 2.10 redisson中的分布式锁2.10.0 redisson简介以及简单使用简单使用redisson中的锁Redisson常用配置 2.10.1 Redisson可重入锁实现原理2.10.2 公平锁&#xff08;Fair Lock&#xff09…...

计算机视觉:卷积层的参数量是多少?

本文重点 卷积核的参数量是卷积神经网络中一个重要的概念,它决定了网络的复杂度和计算量。在深度学习中,卷积操作是一种常用的操作,用于提取图像、语音等数据中的特征。卷积神经网络的优势点在于稀疏连接和权值共享,这使得卷积核的参数相较于传统的神经网络要少很多。 举例…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...