论文笔记--GloVe: Global Vectors for Word Representation
论文笔记--GloVe: Global Vectors for Word Representation
- 1. 文章简介
- 2. 文章概括
- 3 文章重点技术
- 3.1 两种常用的单词向量训练方法
- 3.2 GloVe
- 3.3 模型的复杂度
- 4. 文章亮点
- 5. 原文传送门
- 6. References
1. 文章简介
- 标题:GloVe: Global Vectors for Word Representation
- 作者:Jeffrey Pennington, Richard Socher, Christopher D. Manning
- 日期:2014
- 期刊:EMNLP
2. 文章概括
文章提出了一种新的单词表示的训练方法:Glove。该方法结合了基于统计方法和基于上下文窗口方法的优势,在多个下游任务上超越了当下SOTA方法的表现。
3 文章重点技术
3.1 两种常用的单词向量训练方法
现有的两类常用的单词向量训练方法为
- 基于矩阵分解的方法,如LSA会首先计算一个term-document矩阵,每一列表示每个文档中各个单词的出现频率,然后进行奇异值分解;HAL则会首先计算一个term-term共现矩阵。但此类方法会被频繁出现的the, and等单词影响,计算相似度的时候该类对语义影响很小的单词会占较大的比重。
- 基于上下文窗口的方法,如Word2Vec[1]。此类方法没有用到语料中的统计信息,可能无法捕捉到数据中的重复现象。
3.2 GloVe
为了解决上述两种方法存在的问题,文章提出了一种Global Vectors(GloVe)单词嵌入方法,可以直接捕获语料中的统计信息。
首先,我们计算单词共现矩阵 X X X,其中 X i j X_ij Xij表示单词 j j j出现在单词 i i i的上下文的次数。令 X i = ∑ k X i k X_i = \sum_k X_{ik} Xi=∑kXik表示任意单词出现在单词 i i i上下文的总次数,则 P i j = X i j X i P_{ij} = \frac {X_ij}{X_i} Pij=XiXij表示单词 j j j出现在单词 i i i的上下文的概率。
为了得到每个单词的嵌入 w i w_i wi,文章首先需要假设一种嵌入 w i , w j w_i, w_j wi,wj和共现矩阵之间的关系式。为此,文章给出一个示例:如下表所示,假设考虑单词i=“ice”,j=“steam”,则k="solid"时,由于"solid"和"ice"相关性更高,所以 P i k / P j k P_{ik}/P_{jk} Pik/Pjk应该大一点,下表中实验结果为8.9;如果k=“gas”,和"steam"的相关性更高,从而 P i k / P j k P_{ik}/P_{jk} Pik/Pjk应该小一点,下表中实验结果为 8.5 × 1 0 − 2 8.5 \times 10^{-2} 8.5×10−2;如果k="water"和二者均相关或k="fashion"和二者均不相关,则 P i k / P j k P_{ik}/P_{jk} Pik/Pjk应该接近1,如下表中的 1.36 1.36 1.36和 0.96 0.96 0.96。
为此,文章选择通过单词 i , j i,j i,j之间的概率比值来进行建模: F ( w i , w j , w ~ k ) = P i k P j k F(w_i, w_j, \tilde{w}_k) = \frac {P_{ik}}{P_{jk}} F(wi,wj,w~k)=PjkPik,其中 w i , w j , w ~ k w_i, w_j, \tilde{w}_k wi,wj,w~k分别表示 i , j , k i, j, k i,j,k的词向量, w ~ \tilde{w} w~也是待学习的参数,和 w w w本质上没有区别,只是通过不同的初始化得到的,用于区分探针单词( k k k)和共现单词,类似transformer中的Q,K含义。考虑到单词空间一般是线性的,我们用 w i − w j w_i - w_j wi−wj表示向量之间的差异: F ( w i − w j , w ~ k ) = P i k P j k F(w_i- w_j, \tilde{w}_k) = \frac {P_{ik}}{P_{jk}} F(wi−wj,w~k)=PjkPik,又因为上式左边的输入为两个向量,右边为标量,故我们考虑用向量的点积: F ( ( w i − w j ) T w ~ k ) = P i k P j k F((w_i -w_j)^T\tilde{w}_k) = \frac {P_{ik}}{P_{jk}} F((wi−wj)Tw~k)=PjkPik。由于单词的共现矩阵中,单词和上下文单词是任意指定的,我们可以自由交换当前单词和上下文单词,从而我们要保证交换 w ↔ w ~ w \leftrightarrow \tilde{w} w↔w~和 X ↔ X T X \leftrightarrow X^T X↔XT后上式仍然成立,故我们首先需要 F F F为一个同态映射: F ( ( w i − w j ) T w ~ k ) = F ( w i T w ~ k ) F ( w j T w ~ k ) F((w_i -w_j)^T\tilde{w}_k) = \frac {F(w_i^T\tilde{w}_k)}{F(w_j^T\tilde{w}_k)} F((wi−wj)Tw~k)=F(wjTw~k)F(wiTw~k),从而有 F ( w i T w ~ k ) = P i k = X i k X i F(w_i^T\tilde{w}_k) = P_{ik} = \frac {X_{ik}}{X_i} F(wiTw~k)=Pik=XiXik。由于上式的解为 F = exp F=\exp F=exp,从而 exp ( w i T w ~ k ) = P i k = X i k X i ⟹ w i T w ~ k = log P i k = log ( X i k X i ) = log ( X i k ) − log ( X i ) \exp (w_i^T \tilde{w}_k) = P_{ik} = \frac {X_{ik}}{X_i}\\\implies w_i^T \tilde{w}_k = \log P_{ik} = \log \left(\frac {X_{ik}}{X_i}\right) = \log(X_{ik}) - \log (X_i) exp(wiTw~k)=Pik=XiXik⟹wiTw~k=logPik=log(XiXik)=log(Xik)−log(Xi);其次考虑到上式的 log ( X i ) \log (X_i) log(Xi)与 k k k无关,故可以写作偏差 b i b_i bi,再增加 w ~ k \tilde{w}_k w~k的偏差 b ~ k \tilde{b}_k b~k,我们得到 w i T w ~ k + b i + b ~ k = log ( x i k ) w_i^T \tilde{w}_k + b_i + \tilde{b}_k = \log(x_{ik}) wiTw~k+bi+b~k=log(xik)满足上述对称要求。在此基础上增加权重函数 f ( X i j ) f(X_{ij}) f(Xij)可以保证共现太频繁的元素不会被过分的重视,且稀有的共现元素也不会被过分重视。这就要求 f f f满足非递减且有明确上界,如下函数满足条件: f ( x ) = { ( x / x m a x ) α i f x < x m a x , 1 , o t h e r w i s e f(x) = \begin{cases}(x/x_{max})^{\alpha} \quad &if \ x < x_{max},\\1, \quad &otherwise \end{cases} f(x)={(x/xmax)α1,if x<xmax,otherwise。函数曲线如下图所示
3.3 模型的复杂度
文章证明,当 α = 1.25 \alpha = 1.25 α=1.25时交过较好,此时模型的复杂度为 O ( ∣ C ∣ ) \mathcal{O}(|\mathcal{C}|) O(∣C∣),其中 C \mathcal{C} C表示语料库。相比于其他基于上下文窗口的方法复杂度 O ( V 2 ) \mathcal{O}(V^2) O(V2)更低。
4. 文章亮点
文章提出了基于将上下文窗口和共现矩阵结合的词向量嵌入方法GloVe,数值实验表明,GloVe在单词相似度、单词类比和NER等任务上相比于其他SOTA方法有明显提升。
5. 原文传送门
[GloVe: Global Vectors for Word Representation](GloVe: Global Vectors for Word Representation)
6. References
[1] 论文笔记–Efficient Estimation of Word Representations in Vector Space
相关文章:

论文笔记--GloVe: Global Vectors for Word Representation
论文笔记--GloVe: Global Vectors for Word Representation 1. 文章简介2. 文章概括3 文章重点技术3.1 两种常用的单词向量训练方法3.2 GloVe3.3 模型的复杂度 4. 文章亮点5. 原文传送门6. References 1. 文章简介 标题:GloVe: Global Vectors for Word Representa…...

day57|● 647. 回文子串 ● 516.最长回文子序列
647. 回文子串 https://leetcode.cn/problems/palindromic-substrings/solution/by-lfool-2mvg/ Given a string s, return the number of palindromic substrings in it. A string is a palindrome when it reads the same backward as forward. A substring is a contiguous…...
docker compose.yml学习
docker compose 安装docker-compose sudo curl -L "https://github.com/docker/compose/releases/download/v2.2.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-composechmod x /usr/local/bin/docker-composeln -s /usr/local/bin/docker-…...

【业务功能篇55】Springboot+easyPOI 导入导出
Apache POI是Apache软件基金会的开源项目,POI提供API给Java程序对Microsoft Office格式档案读和写的功能。 Apache POI 代码实现复杂,学习成本较高。 Easypoi 功能如同名字easy,主打的功能就是容易,让一个没见接触过poi的人员 就可以方便的写出Excel导出…...

对顶堆算法
对顶堆可以动态维护一个序列上的第k大的数,由一个大根堆和一个小根堆组成, 小根堆维护前k大的数(包含第k个)大根堆维护比第k个数小的数 [CSP-J2020] 直播获奖 题目描述 NOI2130 即将举行。为了增加观赏性,CCF 决定逐一评出每个选手的成绩&a…...

node.js的优点
提示:node.js的优点 文章目录 一、什么是node.js二、node.js的特性 一、什么是node.js 提示:什么是node.js? Node.js发布于2009年5月,由Ryan Dahl开发,是一个基于ChromeV8引擎的JavaScript运行环境,使用了一个事件驱…...
golang编译跨平台
golang可以在windows上编译出linux、MacOS等系统上的程序。 go编译器windows下可变翼linux程序,例如,GOARCHamd64 和 GOOSlinux 可以用于编译 64 位的 Linux 平台上的可执行文件。: set GOARCHamd64 set GOOSlinux go build main.go通过设置…...

关于Spring的bean的相关注解以及其简单使用方法
一、前置工作 第一步:创建一个maven项目 第二步:在resource中创建一个名字叫做spring-config.xml的文件,并把以下代码复制粘贴 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.sprin…...

【计算机视觉】BLIP:源代码示例demo(含源代码)
文章目录 一、Image Captioning二、VQA三、Feature Extraction四、Image-Text Matching 一、Image Captioning 首先配置代码: import sys if google.colab in sys.modules:print(Running in Colab.)!pip3 install transformers4.15.0 timm0.4.12 fairscale0.4.4!g…...

TWILIGHT靶场详解
TWILIGHT靶场详解 下载地址:https://download.vulnhub.com/sunset/twilight.7z 这是一个比较简单的靶场,拿到IP后我们扫描发现开启了超级多的端口 其实这些端口一点用都没有,在我的方法中 但是也有不同的方法可以拿权限,就需要…...
【案例】--GPT衍生应用案例
目录 一、前言二、GPT实现智能问答架构2.1、基本的GPT实现智能问答架构2.2、可应用的GPT实现智能问答架构1、语义转换2、相似度关键字矩阵3、ES中搜索相似度关键字矩阵三、后续一、前言 GPT,全称Generative Pre-trained Transformer ,中文名可译作生成式预训练Transformer。…...

Sip网络音频对讲广播模块, sip网络寻呼话筒音频模块
Sip网络音频对讲广播模块, sip网络寻呼话筒音频模块 一、模块介绍 SV-2101VP和 SV-2103VP网络音频对讲广播模块 是一款通用的独立SIP音频功能模块,可以轻松地嵌入到OEM产品中。该模块对来自网络的SIP协议及RTP音频流进行编解码。 该模块支持多种网络协议…...
leetcode1219. 黄金矿工(java)
黄金矿工 leetcode1219. 黄金矿工题目描述回溯算法代码 回溯算法 leetcode1219. 黄金矿工 难度: 中等 eetcode 1219 黄金矿工 题目描述 你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元…...
Svelte框架入门
关键词 前端框架、编译器、响应式、模板 介绍 Svelte /svelt/ adj. 苗条的;线条清晰的;和蔼的 Svelte是一个前端组件框架,就像它的英文名字一样,Svelte的目标是打造一个更高性能的响应性前端框架。 Svelte类似于React和Vue框架&am…...

在linux中进行arm交叉编译体验tiny6410裸机程序开发流程
在某鱼上找了一个友善之臂的Tiny6410开发板用来体验一下嵌入式开发。这次先体验一下裸机程序的开发流程,由于这个开发板比较老旧了,官方文档有很多过期的内容,所以记录一下整个过程。 1. 交叉编译器安装 按照光盘A中的文档《04- Tiny6410 L…...

SpringBoot实战(二十三)集成 SkyWalking
目录 一、简介二、拉取镜像并部署1.拉取镜像2.运行skywalking-oap容器3.运行skywalking-ui容器4.访问页面 三、下载解压 agent1.下载2.解压 四、创建 skywalking-demo 项目1.Maven依赖2.application.yml3.DemoController.java 五、构建启动脚本1.startup.bat2.执行启动脚本3.发…...

深度学习实践——卷积神经网络实践:裂缝识别
深度学习实践——卷积神经网络实践:裂缝识别 系列实验 深度学习实践——卷积神经网络实践:裂缝识别 深度学习实践——循环神经网络实践 深度学习实践——模型部署优化实践 深度学习实践——模型推理优化练习 深度学习实践——卷积神经网络实践ÿ…...

linux | vscode | makefile | c++编译和调试
简单介绍环境: vscode 、centos、 gcc、g、makefile 简单来说就是,写好项目然后再自己写makefile脚本实现编译。所以看这篇博客的用户需要了解gcc编译的一些常用命令以及makefile语法。在网上看了很多教程,以及官网也看了很多次,最…...

Spring | Bean 作用域和生命周期
一、通过一个案例来看 Bean 作用域的问题 Spring 是用来读取和存储 Bean,因此在 Spring 中 Bean 是最核心的操作资源,所以接下来我们深入学习⼀下 Bean 对象 假设现在有⼀个公共的 Bean,提供给 A 用户和 B 用户使用,然而在使用的…...
培训(c++题解)
题目描述 某培训机构的学员有如下信息: 姓名(字符串)年龄(周岁,整数)去年 NOIP 成绩(整数,且保证是 5 的倍数) 经过为期一年的培训,所有同学的成绩都有所提…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...