当前位置: 首页 > news >正文

c刷题(一)

目录

1.输出100以内3的倍数

2.将3个数从大到小输出

3.打印100~200素数

方法一

方法二

4.显示printf的返回值

最大公约数

试除法

辗转相除法

九九乘法表

 求十个数的最大值


1.输出100以内3的倍数

 法一:

int n = 0;
while (n*3 < 100){printf("%d ", n*3);n++;}

法二:

	int i = 0;for (i = 1; i <= 100; i++) {if (i % 3 == 0){printf("%d ", i);}}

2.将3个数从大到小输出

由于只有3个数,我们可以采用中间变量换值的方法,相比于依次判断就显得很简单了。

	int a = 0;int b = 0;int c = 0;int tmp = 0;scanf("%d %d %d", &a, &b, &c);if (a < c){tmp = c;c = a;a = tmp;}if (a < b){tmp = b;b = a;a = tmp;}if (b < c){tmp = b;b = c;c = tmp;}printf("%d %d %d\n", a, b, c);return 0; 
}

需要注意的是,这种办法改变了原变量的值。

3.打印100~200素数

方法一

素数,也称质数,特点是只能被1和自身整除,那我们是不是可以用2~n-1之间的数依次来取模进行判断呢?如果有一个数能被整除,那它就不是质数,反之是质数。

	int i = 101;int n;for (i = 101; i < 200; i++){int flag = 0;//开关for (n = 2; n < i; n++){if (i % n == 0){flag = 0;break;}else flag = 1;}if(flag == 1)printf("%d ", i);	}

 因为其中一个数不能整除并不代表它不是素数,所以我们设置一个开关,依次在真和假中切换,能整除为假,不能整除为真,遍历一遍后根据flag的值判断它是否为素数。

方法二

任意不是素数的数都可以分为 m*n的形式。

16 = 4*4 

16 = 2*8

如果将这个数开平方,如果它不是素数,则在2~√n之间必定有个数使它的因子。

(例:√18 = 3(整形省略分数)

             18 = 2*9 18 = 3*6    

大家想想是不是这样的道理,这样做可以减少遍历的次数。

#include <stdio.h>
#include<math.h>
int main(){int i = 101;int n;for (i = 101; i < 200; i+2){int flag = 0;for (n = 2; n <= sqrt(i); n++){if (i % n == 0){flag = 0;break;}else flag = 1;}if(flag == 1)printf("%d ", i);	}
return 0;
}

注意因子可以等于√n,sqrt是用来求根号的函数,需要包含头文件math.h

因为偶数不可能是素数,我们可以跳过偶数部分只进行奇数的循环。

4.显示printf的返回值

要求:第一行输入printf的输出值,第二行输出printf的返回值。

	int ret = printf("hello world!");printf("\n%d", ret);
//等价于int ret = printf("\n%d", printf("hello world!"));

 

由此我们可以得出结论:printf返回值是字符的个数 

最大公约数

试除法

我们找到两个数中较小的那个,用它依次递减,如果能被这两个数整除,那它就是最大公约数。

    int a = 0, b = 0;scanf("%d %d", &a, &b);int ret = a > b ? b : a;while (a % ret || b % ret){ret--;}printf("%d\n", ret);

辗转相除法

具体来说就是两个数先求模,如果不等于0,被除数作为下一个除数,它们的模为新的被除数继续直到没有余数为止

例如:24%12 = 0,则12就是最大公约数。25%12 = 1,12%1 = 0,1就是最大公约数。

反过来12%24 = 12,24%12 = 0,方法仍成立。

	int a = 0, b = 0;int r = 0;scanf("%d %d", &a, &b);while (r = a % b){a = b;b = r;}printf("%d\n", b); 

 附加题:如果要求最小公倍数该怎么做呢?

这里有个公式:最小公倍数 = 两数之积除以最大公约数(a*b/r)

九九乘法表

    int i = 0;for (i = 1; i <= 9; i++){//打印一行int j = 0;for (j=1; j<=i; j++)//列数不超过行数{printf("%d*%d=%-2d ", i, j, i * j);}printf("\n");}

不多赘述,注意我们这里采用左对齐%-2d的方式使得代码整齐,希望大家写代码的时候也能用到这样的技巧。

 求十个数的最大值

这个没什么好说的,假定一个变量max遍历数组,选出最大值即可。需要注意的是,max只能是数组内的一个值,如果给它初始值为0,遇到负数可能会出现错误。

int arr[] = { -1,-2,-3,-4,-5,-6,-7,-8,-9,-10 };int max = arr[0];int i = 0;for (i = 1; i < 10; i++)//从第二个数开始{if (arr[i] > max)max = arr[i];}printf("%d\n", max);

相关文章:

c刷题(一)

目录 1.输出100以内3的倍数 2.将3个数从大到小输出 3.打印100~200素数 方法一 方法二 4.显示printf的返回值 最大公约数 试除法 辗转相除法 九九乘法表 求十个数的最大值 1.输出100以内3的倍数 法一&#xff1a; int n 0; while (n*3 < 100){printf("%d &q…...

webpack

文章目录 webpack概念打包的场景为什么要打包在打包之外 - 翻译在打包之外 - 小动作 课程重点模块化利用立即执行函数来改变 作用域模块化的优点模块化方案的进化史AMD&#xff08;成型比较早&#xff0c;应用不是很广泛&#xff09;COMMONJSES6 MODULE webpack 的打包机制webp…...

反复 Failed to connect to github.com port 443 after xxx ms

前提&#xff1a;使用了代理&#xff0c;浏览器能稳定访问github&#xff0c;但git clone一直超时 解决方案&#xff1a; 1. git config --global http.proxy http://127.0.0.1:1080 2. 代理设置端口1080 3. 1080可自定义 感谢来自这篇博客和评论区的提醒&#xff1a;解决…...

ARM裸机-11

1、安装交叉编译工具工具 1.1、windows中装软件的特点 windows中装软件使用安装包&#xff0c;安装包解压后有两种情况:一种是一个安装文件 (.exe/.msi)&#xff0c;双击进行安装&#xff0c;下一步直到安装完毕。安装完毕后会在桌面上生成快捷方式&#xff0c;我们平时使用快…...

centos7升级glibc

作者&#xff1a;吴业亮 博客&#xff1a;wuyeliang.blog.csdn.net 安装bison&#xff1a; yum install bison -y安装wget、bzip2、gcc、gcc-c和glibc-headers&#xff1a; yum -y install wget bzip2 gcc gcc-c glibc-headers安装make-4.2.1&#xff1a; wget http://ftp.…...

【OnnxRuntime】在linux下编译并安装C++版本的onnx-runtime

目录 安装C接口的onnx-runtime安装依赖项&#xff1a;下载源文件构建ONNX Runtime安装ONNX Runtime 安装C接口的onnx-runtime 安装依赖项&#xff1a; 安装CMake&#xff1a;可以通过包管理器&#xff08;如apt、yum等&#xff09;安装CMake。 安装C编译器&#xff1a;确保系…...

C#基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数的实现

本文实现基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数。 fftshift 函数将信号频谱的零频分量移动到数组中心, 本质是分别对调一三象限数据。 ifftshift完成相反的操作,本质是二四象限的数据块。 OpenCV中没有这两个函数如果使用需要自己实现。 实现代码如下: …...

【SpringBoot】笔记2

文章目录 45、web实验-抽取公共页面46、web实验-遍历数据与页面bug修改47、视图解析-【源码分析】-视图解析器与视图[暂时没看]48、拦截器-登录检查与静态资源放行49、拦截器-【源码分析】-拦截器的执行时机和原理50、文件上传-单文件与多文件上传的使用51、文件上传-【源码流程…...

Spring事务传播机制详细讲解

文章目录 一、事务传播机制1. REQUIRED&#xff1a;2. SUPPORTS&#xff1a;3. MANDATORY&#xff1a;4. REQUIRES_NEW&#xff1a;5. NOT_SUPPORTED&#xff1a;6. NEVER&#xff1a;7. NESTED&#xff1a; 二、事务传播机制分类1. 支持当前事务的传播机制&#xff1a;REQUIRE…...

kubernetes 集群搭建(kubeadm 方式)

目前生产部署 Kubernetes 集群主要有两种方式&#xff1a; &#xff08;1&#xff09; kubeadm Kubeadm 是一个 Kubernetes 官方提供的命令行工具&#xff0c;可以用来部署和管理 Kubernetes 集群。它主要用于在新的 Kubernetes 环境中初始化集群、添加或删除节点等操作。 K…...

基于ARM+FPGA的驱控一体机器人控制器设计

目前市场上工业机器人&#xff0c;数控机床等多轴运动控制系统普遍采用运动控制器加 伺服驱动器的分布式控制方式。在这种控制方式中&#xff0c;控制器一方面完成人机交互&#xff0c;另 一方面进行 NC 代码的解释执行&#xff0c;插补运算&#xff0c;继而将计算出来的位…...

docker 安装 字体文件

先说一下我当前的 场景 及 环境&#xff0c;这样同学们可以先评估本篇文章是否有帮助。 环境&#xff1a; dockerphp8.1-fpmwindows 场景&#xff1a; 来了个需求&#xff0c;有一个默认背景图&#xff0c;可以理解为背景图是一个 "相框"&#xff0c;相框里面就会放…...

Vue.js与ASP.NET的结合,实现企业级应用的开发和部署

在当今快速发展的互联网技术领域&#xff0c;企业级应用的开发和部署变得越来越重要。Vue.js和ASP.NET是两个在前端和后端开发中广泛使用的技术&#xff0c;将它们结合起来可以为企业级应用的开发和部署带来诸多优势。本文将通过代码示例介绍如何使用Vue.js和ASP.NET进行企业级…...

Uncaught SyntaxError: ‘‘ string literal contains an unescaped line break

今天在修改前端页面的时候&#xff0c;页面报错了&#xff0c;提示了这个信息 Uncaught SyntaxError: string literal contains an unescaped line break 问题指向这行代码&#xff0c;这就是通过JS渲染一个easyui的搜索框&#xff0c;仔细确认之后&#xff0c;发现没有任何问…...

Vue3+Vite+TypeScript常用项目模块详解

目录 1.Vue3ViteTypeScript 概述 1.1 vue3 1.1.1 Vue3 概述 1.1.2 vue3的现状与发展趋势 1.2 Vite 1.2.1 现实问题 1.2 搭建vite项目 1.3 TypeScript 1.3.1 TypeScript 定义 1.3.2 TypeScript 基本数据类型 1.3.3 TypeScript语法简单介绍 2. 项目配置简单概述 2.…...

数字电路(一)

1、例题 1、进行DA数模转换器选型时&#xff0c;一般要选择主要参数有&#xff08; A&#xff09;、转换精度和转换速度。 A、分辨率 B、输出电流 C、输出电阻 D、模拟开关 2、下图所示电路的逻辑功能为&#xff08; B&#xff09; A、与门 B、或门 C、与非门 D、或非门 分析该…...

Oracle也有回收站

在数据库管理中&#xff0c;数据的删除是一个常见的操作。然而&#xff0c;有时候我们可能会意外地删除了一些重要的数据。幸运的是&#xff0c;Oracle数据库提供了一个类似于回收站的功能&#xff0c;可以帮助我们恢复被删除的数据。本文将介绍Oracle数据库中的回收站功能以及…...

投稿注意!APA格式超全示例详解,原本28天能录用,可能要拖延2个月

为什么同一本期刊有论文28天录用&#xff0c;有论文10个月才录用&#xff1f;结合近期征稿的这本经管类SSCI期刊&#xff0c;小编&#xff08;Unionpub学术&#xff09;整理了部分影响录用的几个因素&#xff0c;准备提交此期刊的作者可自查参考下&#xff1a; &#xff08;参…...

【Python】Web学习笔记_flask(1)——模拟登录

安装flask pip3 install flask 第一部分内容&#xff1a; 1、主页面输出hello world 2、根据不同用户名参数输出用户信息 3、模拟登录 from flask import Flask,url_for,redirectappFlask(__name__)app.route(/) def index():return hello worldapp.route(/user/<uname…...

css单行文本省略号多行文本省略号

设置单行文本省略号的写法 &#xff1a; 先设置宽固定的宽度 &#xff1a;width: 300px; 设置不换行 &#xff1a;white-space:nowrap; 设置省略号&#xff1a;text-overflow: ellipsis; 裁剪多余的内容/溢出的内容&#xff1a;overflow: hidden; width: 200px; white-space:…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...