当前位置: 首页 > news >正文

【图论】无向图连通性(tarjan算法)

割边:dfn[u]<low[v]

割点:dfn[u]<=low[v] (若为根节点,要有两个v这样的点)

一.知识点:

1.连通

在图论中,连通性是指一个无向图中的任意两个顶点之间存在路径。如果对于图中的任意两个顶点 u 和 v,存在一条路径从 u 到 v,那么图被称为连通图。如果图不是连通的,那么它可以被分为多个连通分量,每个连通分量都是一个连通子图。

2.割点:

割点(Cut Vertex),也称为关节点或割顶,是指在无向图中,如果移除该顶点及其相连的边,会导致图不再连通,那么该顶点就被称为割点。

3.割边:

割边(Cut Edge),也称为,是指在无向图中,如果移除该边,会导致图不再连通,那么该边就被称为割边。

割边在图中起到了连接不同连通分量的作用,其移除会导致图的连通性发生变化。

 4.tarjan算法:(选择性阅读)

 Tarjan算法是一种用于寻找有向图中强连通分量(Strongly Connected Components,简称SCC)的算法,由Robert Tarjan在1972年提出。强连通分量是指在有向图中,任意两个顶点之间存在双向路径。

Tarjan算法使用深度优先搜索(DFS)来遍历图,并通过维护一个栈和一些辅助数据结构来识别强连通分量。算法的基本思想是通过DFS遍历图中的每个顶点,并为每个顶点记录其访问次序(Discovery Time)和能够回溯到的最早的祖先顶点(Lowest Ancestor)。通过这些信息,可以识别出具有相同祖先的顶点集合,即一个强连通分量。

Tarjan算法的步骤如下:

  1. 对图中的每个顶点进行深度优先搜索(DFS)遍历。
  2. 在DFS遍历的过程中,为每个顶点记录其访问次序和最早祖先顶点。
  3. 将已访问的顶点入栈。
  4. 当DFS遍历回溯到一个顶点时,检查该顶点的最早祖先顶点。如果最早祖先顶点是自身,则将栈中的顶点弹出,并将这些顶点构成一个强连通分量。
  5. 重复步骤3和步骤4,直到遍历完所有的顶点。

Tarjan算法的时间复杂度为O(V+E),其中V是顶点数,E是边数。它是一种高效的算法,常被用于解决与强连通分量相关的问题,如图的缩点、强连通分量的数量和结构等。

总之,Tarjan算法是一种用于寻找有向图中强连通分量的算法,通过DFS遍历和栈的运用,可以高效地找到图中的所有强连通分量。


二.讲解 

在此之前,先介绍两个数组;

int dfn[];里面存放访问顺序(时间戳);

int low[];里面存放追溯值(即祖先节点最小的dfn)

(1)割边

tarjan提出:(证明可以自行百度)

当dfn[u]<low[v]时,连接这两条点的边为割边(重边要特殊处理,后面介绍)

(2)割点

tarjan提出:(证明可以自行百度)

当dfn[u]<=low[v]时,u这个点为割点(若为根节点,要有两个v这样符合条件的点)


三.割边

(1)题目

题目描述:

找出割边

输入:

第一行输入两个整数n和m,表示点和边的个数。

第i(2<=i<=2+m)行,每行输出两个数字,表示一条边的两个点。

输出:

割边

样例输入:

6 7
1 2
1 3
2 4 
2 5
3 4
4 5
4 6

样例输出:

4---6

(2)初代码 

/*
6 7
1 2
1 3
2 4 
2 5
3 4
4 5
4 6
*/#include<bits/stdc++.h>
#define maxn 100005
using namespace std;
int n,m;
struct Edge{int u,v,next;
}edge[maxn<<1];
int cnt,head[maxn];
void add(int u,int v){edge[++cnt]=(Edge){u,v,head[u]}; head[u]=cnt;
}
int num,dfn[maxn],low[maxn];
void tarjan(int u,int fa){dfn[u]=low[u]=++num;for(int i=head[u];i;i=edge[i].next){int v=edge[i].v;if(v==fa) continue;if(dfn[v]==0){tarjan(v,u);low[u]=min(low[u],low[v]);if(dfn[u]<low[v]){ //割边条件 ,若>则表示v不止和u相连 cout<<u<<"----"<<v<<endl; }}else{low[u]=min(low[u],dfn[v]);}}
}
int main(){scanf("%d%d",&n,&m);int u,v;for(int i=1;i<=m;i++){scanf("%d%d",&u,&v);add(u,v); add(v,u);}tarjan(1,0);return 0;
}

(3)bug与解答

1.若这张图有多个连通分量怎么办?

答:遍历即可

	for(int i=1;i<=n;i++){if(dfn[i]==0)  tarjan(1,0);}

2.若有重边怎么办?结果显然不对。

答:只continue,第二次让这段代码运行

然后就无法满足 dfn[u]<low[v]条件了

		if(v==fa){k++; //防止重边 if(k==1) continue;} 

(4)最终代码

/*
6 7
1 2
1 3
2 4 
2 5
3 4
4 5
4 6
*/#include<bits/stdc++.h>
#define maxn 100005
using namespace std;
int n,m;
struct Edge{int u,v,next;
}edge[maxn<<1];
int cnt,head[maxn];
void add(int u,int v){edge[++cnt]=(Edge){u,v,head[u]}; head[u]=cnt;
}
int num,dfn[maxn],low[maxn];
void tarjan(int u,int fa){int k=0;dfn[u]=low[u]=++num;for(int i=head[u];i;i=edge[i].next){int v=edge[i].v;if(v==fa){k++; //防止重边 if(k==1) continue;} if(dfn[v]==0){tarjan(v,u);low[u]=min(low[u],low[v]);if(dfn[u]<low[v]){ //割边条件 ,若>则表示v不止和u相连 cout<<u<<"---"<<v<<endl; }}else{low[u]=min(low[u],dfn[v]);}}
}
int main(){scanf("%d%d",&n,&m);int u,v;for(int i=1;i<=m;i++){scanf("%d%d",&u,&v);add(u,v); add(v,u);}//防止本来就有不连通的 for(int i=1;i<=n;i++){if(dfn[i]==0)  tarjan(1,0);}return 0;
}

四.割点

其实只是微改动一下即可。其次就是可以优化一下。函数传参只需要传u,无需判断是否为父节点。因为不会影响结果。(自行参考代码推理)

再次强调:若为根节点,要有两个v这样的点!

参考代码:

/*
6 7
1 2
1 3
2 4 
2 5
3 4
4 5
4 6
*/#include<bits/stdc++.h>
#define maxn 100005
using namespace std;
int n,m;
struct Edge{int u,v,next;
}edge[maxn<<1];
int cnt,head[maxn];
void add(int u,int v){edge[++cnt]=(Edge){u,v,head[u]}; head[u]=cnt;
}
int num,dfn[maxn],low[maxn],root;
void tarjan(int u){dfn[u]=low[u]=++num;int flag=0;for(int i=head[u];i;i=edge[i].next){int v=edge[i].v;if(dfn[v]==0){tarjan(v);low[u]=min(low[u],low[v]);if(dfn[u]<=low[v]){ //割点条件 if(u!=root || flag>1) cout<<u<<" ";}}else{low[u]=min(low[u],dfn[v]);}}
}
int main(){scanf("%d%d",&n,&m);int u,v;for(int i=1;i<=m;i++){scanf("%d%d",&u,&v);add(u,v); add(v,u);}//防止本来就有不连通的 for(int i=1;i<=n;i++){if(dfn[i]==0){root=i;tarjan(i);} }return 0;
}

相关文章:

【图论】无向图连通性(tarjan算法)

割边&#xff1a;dfn[u]<low[v] 割点&#xff1a;dfn[u]<low[v] (若为根节点&#xff0c;要有两个v这样的点) 一.知识点&#xff1a; 1.连通&#xff1a; 在图论中&#xff0c;连通性是指一个无向图中的任意两个顶点之间存在路径。如果对于图中的任意两个顶点 u 和 v&…...

Docker安装

Docker实践 yum安装 YUM源可以使用官方YUM源、清华大学开源镜像站配置YUM源&#xff0c;也可以使用阿里云开源镜像站提供的YUM源&#xff0c;建议选择使用阿里云开源镜像站提供的YUM源&#xff0c;原因速度快。 地址: https://developer.aliyun.com/mirror/ 我们安装ce版 …...

06. 计数原理

6. 计数原理 6.1 分类加法计数原理与分步乘法计数原理 分类加法计数原理定义 完成一件事&#xff0c;有 n n n 类办法&#xff0c;在第1类办法中有 m 1 m_1 m1​ 种不同的方法&#xff0c;在第2类办法中有 m 2 m_2 m2​ 种不同的方法&#xff0c;…&#xff0c;在第 n n…...

计算机网络基础(静态路由,动态路由,公网IP,私网IP,NAT技术)

文章目录 一&#xff1a;静态路由和动态路由二&#xff1a;静态路由的配置路由信息的方式演示三&#xff1a;默认路由四&#xff1a;公网IP和私网IP和NAT技术的基本理解 一&#xff1a;静态路由和动态路由 在说静态路由和动态路由前&#xff0c;我们需要来了解一下&#xff0…...

CGAL 点云Alpha-Shape曲面重建算法

文章目录 一、简介二、相关参数三、实现代码四、实现效果参考资料一、简介 在数学上, a l p h a − s h a p e alpha-shape a...

Java 文件过滤器FileFilter | 按条件筛选文件

文章目录 一、概述1.1 何时会用到文件过滤器1.2 工作流程1.3 常用的接口和类1.4 文件过滤器的作用 二、按文件属性过滤2.1 按前缀或后缀过滤文件名2.2 按文件大小过滤 三、按文件内容过滤3.1 文本文件过滤器3.1.1 根据关键字过滤文件内容3.1.2 使用正则表达式过滤文件内容 3.2 …...

python格式化地址信息

背景 最近在折腾一个好玩的库&#xff0c;capa 实现地址的格式化输出。我看的教程是这样的&#xff1a; location_str ["徐汇区虹漕路461号58号楼5楼", "泉州市洛江区万安塘西工业区"] import cpca df cpca.transform(location_str) df在正式的运行代码…...

k8s1.26.6 安装gitlab

Gitlab官方提供了 Helm 的方式在 Kubernetes 集群中来快速安装&#xff0c;但是在使用的过程中发现 Helm 提供的 Chart 包中有很多其他额外的配置&#xff0c;所以我们这里使用自定义的方式来安装&#xff0c;也就是自己来定义一些资源清单文件。 Gitlab主要涉及到3个应用&…...

C5.0决策树建立个人信用风险评估模型

通过构建自动化的信用评分模型&#xff0c;以在线方式进行即时的信贷审批能够为银行节约很多人工成本。本案例&#xff0c;我们将使用C5.0决策树算法建立一个简单的个人信用风险评估模型。 导入类库 读取数据 #创建编码所用的数据字典 col_dicts{} #要编码的属性集 cols [che…...

【k8s集群部署】使用containerd运行时部署kubernetes集群(V1.27版本)

【k8s集群部署】使用containerd运行时部署kubernetes集群(V1.27版本) 一、本次实践介绍1.1 环境规划介绍1.2 本次实践简介二、三台主机基础环境配置2.1 主机配置工作2.2 关闭防火墙和selinux2.3 关闭swap2.4 清空iptables2.5 配置时间同步2.6 修改内核参数2.7 配置hosts文件三…...

网络安全进阶学习第八课——信息收集

文章目录 一、什么是信息收集&#xff1f;二、信息收集的原则三、信息收集的分类1.主动信息收集2.被动信息收集 四、资产探测1、Whois查询#常用网站&#xff1a; 2、备案信息查询#常用网站&#xff1a; 3、DNS查询#常用网站&#xff1a; 4、子域名收集#常用网站&#xff1a;#常…...

Spring Data Elasticsearch - 在Spring应用中操作Elasticsearch数据库

Spring Data Elasticsearch 文章目录 Spring Data Elasticsearch1. 定义文档映射实体类2. Repository3. ElasticsearchRestTemplate3.1 查询相关特性3.1.1 过滤3.1.2 排序3.1.3 自定义分词器 3.2 高级查询 4. 索引管理4.1 创建索引4.2 检索索引4.3 修改映射4.4 删除索引 5. 异常…...

图论-简明导读

计算机图论是计算机科学中的一个重要分支&#xff0c;它主要研究图的性质和结构&#xff0c;以及如何在计算机上有效地存储、处理和操作这些图。本文将总结计算机图论的核心知识点。 一、基本概念 计算机图论中的基本概念包括图、节点、边等。图是由节点和边构成的数据结构&am…...

记一次 .NET 某物流API系统 CPU爆高分析

一&#xff1a;背景 1. 讲故事 前段时间有位朋友找到我&#xff0c;说他程序CPU直接被打满了&#xff0c;让我帮忙看下怎么回事&#xff0c;截图如下&#xff1a; 看了下是两个相同的程序&#xff0c;既然被打满了那就抓一个 dump 看看到底咋回事。 二&#xff1a;为什么会打…...

【Docker】Docker安装Kibana服务_Docker+Elasticsearch+Kibana

文章目录 1. 什么是Kibana2. Docker安装Kibana2.1. 前提2.2. 安装Kibana 点击跳转&#xff1a;Docker安装MySQL、Redis、RabbitMQ、Elasticsearch、Nacos等常见服务全套&#xff08;质量有保证&#xff0c;内容详情&#xff09; 1. 什么是Kibana Kibana 是一款适用于Elasticse…...

前端面试题-VUE

1. 对于MVVM的理解 MVVM 是 Model-View-ViewModel 的缩写Model 代表数据模型&#xff0c;也可以在 Model 中定义数据修改和操作的业务逻辑。View 代表 UI 组件&#xff0c;它负责将数据模型转化成 UI 展现出来。ViewModel 监听模型数据的改变和控制视图⾏为、处理⽤户交互&…...

Linux嵌入式平台安全启动理解介绍

一、意义 安全启动可以防止未授权的或是进行恶意篡改的软件在系统上运行,是系统安全的保护石,每一级的前一个镜像会对该镜像进行校验。 1.1 安全启动原理介绍 通过数字签名进行镜像完整性验证(使用到非对称加密算法和哈希算法) 签名过程: raw_image--->use ha…...

安全学习DAY09_加密逆向,特征识别

算法逆向&加密算法分类&#xff0c;特征识别 文章目录 算法逆向&加密算法分类&#xff0c;特征识别算法概念&#xff0c;分类单向散列加密 - MD5对称加密 - AES非对称加密 - RSA 常见加密算法识别特征&#xff0c;解密特点MD5密文特点BASE64编码特点AES、DES特点RSA密文…...

原型模式(Prototype)

原型模式是一种创建型设计模式&#xff0c;使调用方能够复制已有对象&#xff0c;而又无需使代码依赖它们所属的类。当有一个类的实例&#xff08;原型&#xff09;&#xff0c;并且想通过复制原型来创建新对象时&#xff0c;通常会使用原型模式。 The Prototype pattern is g…...

深度学习之用PyTorch实现线性回归

代码 # 调用库 import torch# 数据准备 x_data torch.Tensor([[1.0], [2.0], [3.0]]) # 训练集输入值 y_data torch.Tensor([[2.0], [4.0], [6.0]]) # 训练集输出值# 定义线性回归模型 class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self)._…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...