当前位置: 首页 > news >正文

使用 Go 语言实现二叉搜索树

原文链接: 使用 Go 语言实现二叉搜索树

二叉树是一种常见并且非常重要的数据结构,在很多项目中都能看到二叉树的身影。

它有很多变种,比如红黑树,常被用作 std::mapstd::set 的底层实现;B 树和 B+ 树,广泛应用于数据库系统中。

本文要介绍的二叉搜索树用的也很多,比如在开源项目 go-zero 中,就被用来做路由管理。

这篇文章也算是一篇前导文章,介绍一些必备知识,下一篇再来介绍具体在 go-zero 中的应用。

二叉搜索树的特点

最重要的就是它的有序性,在二叉搜索树中,每个节点的值都大于其左子树中的所有节点的值,并且小于其右子树中的所有节点的值。

这意味着通过二叉搜索树可以快速实现对数据的查找和插入。

Go 语言实现

本文主要实现了以下几种方法:

  • Insert(t):插入一个节点
  • Search(t):判断节点是否在树中
  • InOrderTraverse():中序遍历
  • PreOrderTraverse():前序遍历
  • PostOrderTraverse():后序遍历
  • Min():返回最小值
  • Max():返回最大值
  • Remove(t):删除一个节点
  • String():打印一个树形结构

下面分别来介绍,首先定义一个节点:

type Node struct {key   intvalue Itemleft  *Node //leftright *Node //right
}

定义树的结构体,其中包含了锁,是线程安全的:

type ItemBinarySearchTree struct {root *Nodelock sync.RWMutex
}

插入操作:

func (bst *ItemBinarySearchTree) Insert(key int, value Item) {bst.lock.Lock()defer bst.lock.Unlock()n := &Node{key, value, nil, nil}if bst.root == nil {bst.root = n} else {insertNode(bst.root, n)}
}// internal function to find the correct place for a node in a tree
func insertNode(node, newNode *Node) {if newNode.key < node.key {if node.left == nil {node.left = newNode} else {insertNode(node.left, newNode)}} else {if node.right == nil {node.right = newNode} else {insertNode(node.right, newNode)}}
}

在插入时,需要判断插入节点和当前节点的大小关系,保证搜索树的有序性。

中序遍历:

func (bst *ItemBinarySearchTree) InOrderTraverse(f func(Item)) {bst.lock.RLock()defer bst.lock.RUnlock()inOrderTraverse(bst.root, f)
}// internal recursive function to traverse in order
func inOrderTraverse(n *Node, f func(Item)) {if n != nil {inOrderTraverse(n.left, f)f(n.value)inOrderTraverse(n.right, f)}
}

前序遍历:

func (bst *ItemBinarySearchTree) PreOrderTraverse(f func(Item)) {bst.lock.Lock()defer bst.lock.Unlock()preOrderTraverse(bst.root, f)
}// internal recursive function to traverse pre order
func preOrderTraverse(n *Node, f func(Item)) {if n != nil {f(n.value)preOrderTraverse(n.left, f)preOrderTraverse(n.right, f)}
}

后序遍历:

func (bst *ItemBinarySearchTree) PostOrderTraverse(f func(Item)) {bst.lock.Lock()defer bst.lock.Unlock()postOrderTraverse(bst.root, f)
}// internal recursive function to traverse post order
func postOrderTraverse(n *Node, f func(Item)) {if n != nil {postOrderTraverse(n.left, f)postOrderTraverse(n.right, f)f(n.value)}
}

返回最小值:

func (bst *ItemBinarySearchTree) Min() *Item {bst.lock.RLock()defer bst.lock.RUnlock()n := bst.rootif n == nil {return nil}for {if n.left == nil {return &n.value}n = n.left}
}

由于树的有序性,想要得到最小值,一直向左查找就可以了。

返回最大值:

func (bst *ItemBinarySearchTree) Max() *Item {bst.lock.RLock()defer bst.lock.RUnlock()n := bst.rootif n == nil {return nil}for {if n.right == nil {return &n.value}n = n.right}
}

查找节点是否存在:

func (bst *ItemBinarySearchTree) Search(key int) bool {bst.lock.RLock()defer bst.lock.RUnlock()return search(bst.root, key)
}// internal recursive function to search an item in the tree
func search(n *Node, key int) bool {if n == nil {return false}if key < n.key {return search(n.left, key)}if key > n.key {return search(n.right, key)}return true
}

删除节点:

func (bst *ItemBinarySearchTree) Remove(key int) {bst.lock.Lock()defer bst.lock.Unlock()remove(bst.root, key)
}// internal recursive function to remove an item
func remove(node *Node, key int) *Node {if node == nil {return nil}if key < node.key {node.left = remove(node.left, key)return node}if key > node.key {node.right = remove(node.right, key)return node}// key == node.keyif node.left == nil && node.right == nil {node = nilreturn nil}if node.left == nil {node = node.rightreturn node}if node.right == nil {node = node.leftreturn node}leftmostrightside := node.rightfor {//find smallest value on the right sideif leftmostrightside != nil && leftmostrightside.left != nil {leftmostrightside = leftmostrightside.left} else {break}}node.key, node.value = leftmostrightside.key, leftmostrightside.valuenode.right = remove(node.right, node.key)return node
}

删除操作会复杂一些,分三种情况来考虑:

  1. 如果要删除的节点没有子节点,只需要直接将父节点中,指向要删除的节点指针置为 nil 即可
  2. 如果删除的节点只有一个子节点,只需要更新父节点中,指向要删除节点的指针,让它指向删除节点的子节点即可
  3. 如果删除的节点有两个子节点,我们需要找到这个节点右子树中的最小节点,把它替换到要删除的节点上。然后再删除这个最小节点,因为最小节点肯定没有左子节点,所以可以应用第二种情况删除这个最小节点即可

最后是一个打印树形结构的方法,在实际项目中其实并没有实际作用:

func (bst *ItemBinarySearchTree) String() {bst.lock.Lock()defer bst.lock.Unlock()fmt.Println("------------------------------------------------")stringify(bst.root, 0)fmt.Println("------------------------------------------------")
}// internal recursive function to print a tree
func stringify(n *Node, level int) {if n != nil {format := ""for i := 0; i < level; i++ {format += "       "}format += "---[ "level++stringify(n.left, level)fmt.Printf(format+"%d\n", n.key)stringify(n.right, level)}
}

单元测试

下面是一段测试代码:

func fillTree(bst *ItemBinarySearchTree) {bst.Insert(8, "8")bst.Insert(4, "4")bst.Insert(10, "10")bst.Insert(2, "2")bst.Insert(6, "6")bst.Insert(1, "1")bst.Insert(3, "3")bst.Insert(5, "5")bst.Insert(7, "7")bst.Insert(9, "9")
}func TestInsert(t *testing.T) {fillTree(&bst)bst.String()bst.Insert(11, "11")bst.String()
}// isSameSlice returns true if the 2 slices are identical
func isSameSlice(a, b []string) bool {if a == nil && b == nil {return true}if a == nil || b == nil {return false}if len(a) != len(b) {return false}for i := range a {if a[i] != b[i] {return false}}return true
}func TestInOrderTraverse(t *testing.T) {var result []stringbst.InOrderTraverse(func(i Item) {result = append(result, fmt.Sprintf("%s", i))})if !isSameSlice(result, []string{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"}) {t.Errorf("Traversal order incorrect, got %v", result)}
}func TestPreOrderTraverse(t *testing.T) {var result []stringbst.PreOrderTraverse(func(i Item) {result = append(result, fmt.Sprintf("%s", i))})if !isSameSlice(result, []string{"8", "4", "2", "1", "3", "6", "5", "7", "10", "9", "11"}) {t.Errorf("Traversal order incorrect, got %v instead of %v", result, []string{"8", "4", "2", "1", "3", "6", "5", "7", "10", "9", "11"})}
}func TestPostOrderTraverse(t *testing.T) {var result []stringbst.PostOrderTraverse(func(i Item) {result = append(result, fmt.Sprintf("%s", i))})if !isSameSlice(result, []string{"1", "3", "2", "5", "7", "6", "4", "9", "11", "10", "8"}) {t.Errorf("Traversal order incorrect, got %v instead of %v", result, []string{"1", "3", "2", "5", "7", "6", "4", "9", "11", "10", "8"})}
}func TestMin(t *testing.T) {if fmt.Sprintf("%s", *bst.Min()) != "1" {t.Errorf("min should be 1")}
}func TestMax(t *testing.T) {if fmt.Sprintf("%s", *bst.Max()) != "11" {t.Errorf("max should be 11")}
}func TestSearch(t *testing.T) {if !bst.Search(1) || !bst.Search(8) || !bst.Search(11) {t.Errorf("search not working")}
}func TestRemove(t *testing.T) {bst.Remove(1)if fmt.Sprintf("%s", *bst.Min()) != "2" {t.Errorf("min should be 2")}
}

上文中的全部源码都是经过测试的,可以直接运行,并且已经上传到了 GitHub,需要的同学可以自取。

以上就是本文的全部内容,如果觉得还不错的话欢迎点赞转发关注,感谢支持。


源码地址:

  • https://github.com/yongxinz/go-example

推荐阅读:

  • Go 语言 select 都能做什么?
  • Go 语言 context 都能做什么?

参考文章:

  • https://flaviocopes.com/golang-data-structure-binary-search-tree/

相关文章:

使用 Go 语言实现二叉搜索树

原文链接&#xff1a; 使用 Go 语言实现二叉搜索树 二叉树是一种常见并且非常重要的数据结构&#xff0c;在很多项目中都能看到二叉树的身影。 它有很多变种&#xff0c;比如红黑树&#xff0c;常被用作 std::map 和 std::set 的底层实现&#xff1b;B 树和 B 树&#xff0c;…...

系统接口自动化测试方案

XXX接口自动化测试方案 1、引言 1.1 文档版本 版本 作者 审批 备注 V1.0 XXXX 创建测试方案文档 1.2 项目情况 项目名称 XXX 项目版本 V1.0 项目经理 XX 测试人员 XXXXX&#xff0c;XXX 所属部门 XX 备注 1.3 文档目的 本文档主要用于指导XXX-Y…...

小研究 - JVM 垃圾回收方式性能研究(一)

本文从几种JVM垃圾回收方式及原理出发&#xff0c;研究了在 SPEC jbb2015基准测试中不同垃圾回收方式对于JVM 性能的影响&#xff0c;并通过最终测试数据对比&#xff0c;给出了不同应用场景下如何选择垃圾回收策略的方法。 目录 1 引言 2 垃圾回收算法 2.1 标记清除法 2.2…...

[LeetCode]链表相关题目(c语言实现)

文章目录 LeetCode203. 移除链表元素LeetCode237. 删除链表中的节点LeetCode206. 反转链表ⅠLeetCode92. 反转链表 II思路 1思路 2 LeetCode876. 链表的中间结点剑指 Offer 22. 链表中倒数第k个节点LeetCode21. 合并两个有序链表LeetCode86. 分隔链表LeetCode234. 回文链表Leet…...

[深入理解NAND Flash (操作篇)] NAND 初始化常用命令:复位 (Reset) 和 Read ID 和 Read UID 操作和代码实现

依JEDEC eMMC及经验辛苦整理,原创保护,禁止转载。 专栏 《深入理解Flash:闪存特性与实践》 内容摘要 全文 4400 字,主要内容 复位的目的和作用?   NAND Reset 种类:FFh, FCh, FAh, FDh 区别 Reset 操作步骤 和 代码实现 Read ID 操作步骤 和 代码实现 Read Uni…...

RxJava 复刻简版之二,调用流程分析之案例实现

接上篇&#xff1a;https://blog.csdn.net/da_ma_dai/article/details/131878516 代码节点&#xff1a;https://gitee.com/bobidali/lite-rx-java/commit/05199792ce75a80147c822336b46837f09229e46 java 类型转换 kt 类型&#xff1a; Any Object泛型&#xff1a; 协变: …...

SpringMVC中Model和ModelAndView的区别

SpringMVC中Model和ModelAndView的区别 两者的区别&#xff1a; 在SpringMVC中&#xff0c;Model和ModelAndView都是用于将数据传递到视图层的对象 Model是”模型“的意思&#xff0c;是MVC架构中的”M“部分&#xff0c;是用来传输数据的。 理解成MVC架构中的”M“和”V“…...

Tomcat安装与管理

文章目录 Tomcat安装及管理Tomcat gz包安装&#xff1a;JDK安装&#xff1a;Tomcat安装&#xff1a;修改配置文件&#xff08;如下&#xff09;&#xff1a;服务启动配置&#xff1a; Tomcat-管理(部署jpress)&#xff1a;修改允许访问的主机修改允许管理APP的主机进入管理&…...

React之路由

React之路由 背景&#xff1a; react: 18.2.0 路由&#xff1a;react-router-dom: 6.14.2 1、路由表配置 src下新建router/index.ts import React, { lazy } from react import { Navigate } from react-router-dom import Layout from /layout/Index import { JSX } from rea…...

机器学习深度学习——非NVIDIA显卡怎么做深度学习(坑点排查)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——数值稳定性和模型化参数&#xff08;详细数学推导&#xff09; &#x1f4da;订阅专栏&#xff1a;机器…...

2021 Robocom 决赛 第四题

原题链接&#xff1a; PTA | 程序设计类实验辅助教学平台 题面&#xff1a; 在一个名叫刀塔的国家里&#xff0c;有一只猛犸正在到处跑着&#xff0c;希望能够用它的长角抛物技能来撞飞别人。已知刀塔国有 N 座城市&#xff0c;城市之间由 M 条道路互相连接&#xff0c;为了拦…...

线程池-手写线程池Linux C简单版本(生产者-消费者模型)

目录 简介手写线程池线程池结构体分析task_ttask_queue_tthread_pool_t 线程池函数分析thread_pool_createthread_pool_postthread_workerthread_pool_destroywait_all_donethread_pool_free 主函数调用 运行结果 简介 本线程池采用C语言实现 线程池的场景&#xff1a; 当某些…...

05-向量的意义_n维欧式空间

线性代数 什么是向量&#xff1f;究竟为什么引入向量&#xff1f; 为什么线性代数这么重要&#xff1f;从研究一个数拓展到研究一组数 一组数的基本表示方法——向量&#xff08;Vector&#xff09; 向量是线性代数研究的基本元素 e.g. 一个数&#xff1a; 666&#xff0c;…...

交通运输安全大数据分析解决方案

当前运输市场竞争激烈&#xff0c;道路运输企业受传统经营观念影响&#xff0c;企业管理者安全意识淡薄&#xff0c;从业人员规范化、流程化的管理水平较低&#xff0c;导致制度规范在落实过程中未能有效监督与管理&#xff0c;执行过程中出现较严重的偏差&#xff0c;其营运车…...

vimrc 配置 (持续跟新中)

vimrc 配置 #显示行号 set nu #自动换行 set autoindent #设置tab键 宽度为四个空格 set tabstop4 set shiftwidth4 set expandtab更多文章&#xff0c;详见我的博客网站...

【集成学习介绍】

1. 引言 在机器学习领域&#xff0c;集成学习&#xff08;Ensemble Learning&#xff09;是一种强大的技术&#xff0c;通过将多个弱学习器组合成一个更强大的集成模型&#xff0c;来提升模型的鲁棒性和性能。 2. 集成学习的原理 集成学习的核心思想是“三个臭皮匠&#xff…...

动画制作选择Blender还是Maya

Blender和Maya是两种最广泛使用的 3D 建模和动画应用程序。许多经验丰富的用户表示&#xff0c;Blender 在雕刻工具方面远远领先于 Maya&#xff0c;并且在 3D 建模方面达到了相同的质量水平。对于刚接触动画行业的人来说&#xff0c;您可能会问“我应该使用 Blender 还是 Maya…...

215. 数组中的第K个最大元素

题目链接&#xff1a;力扣 解题思路&#xff1a; 方法一&#xff1a;基于快速排序 因为题目中只需要找到第k大的元素&#xff0c;而快速排序中&#xff0c;每一趟排序都可以确定一个最终元素的位置。 当使用快速排序对数组进行降序排序时&#xff0c;那么如果有一趟排序过程…...

NLP From Scratch: 生成名称与字符级RNN

NLP From Scratch: 生成名称与字符级RNN 这是我们关于“NLP From Scratch”的三个教程中的第二个。 在<cite>第一个教程< / intermediate / char_rnn_classification_tutorial ></cite> 中&#xff0c;我们使用了 RNN 将名称分类为来源语言。 这次&#xff…...

Spring MVC程序开发

目录 1.什么是Spring MVC? 1.1MVC定义 1.2MVC和Spring MVC的关系 2.为什么要学习Spring MVC? 3.怎么学Spring MVC? 3.1Spring MVC的创建和连接 3.1.1创建Spring MVC项目 3.1.2RequestMapping 注解介绍 3.1.3 RequestMapping 是 post 还是 get 请求&#xff1f; ​…...

医疗知识图谱问答——文本分类解析

前言 Neo4j的数据库构建完成后&#xff0c;现在就是要实现医疗知识的解答功能了。因为是初版&#xff0c;这里的问题解答不会涉及深度学习&#xff0c;目前只是一个条件查询的过程。而这个过程包括对问题的关键词拆解分类&#xff0c;然后提取词语和类型去图数据库查询&#xf…...

JS关于多张图片上传显示报错不影响后面图片上传方法

关于多张图片上传或者下载显示报错后会程序会终止执行&#xff0c;从而影响后面图片上传。 解决方法&#xff1a; /*能正常访问的图片*/ const url https://2vimg.hitv.com/100/2308/0109/5359/dqKIZ7d4cnHL/81Vu0c.jpg?x-oss-processimage/format,webp; /*不能正常下载的图…...

MySQL踩坑之sql_mode的用法

目录 定义 报错重现 ​编辑 原因分析 sql_mode值说明 查看当前sql_mode 设置sql_mode 定义 什么是sql_mode?玩了这么久的MySQL语句࿰...

消息队列总结(4)- RabbitMQ Kafka RocketMQ高性能方案

1.RabbitMQ的高性能解决方案 1.1 发布确认机制 RabbitMQ提供了3种生产者发布确认的模式&#xff1a; 简单模式&#xff08;Simple Mode&#xff09;&#xff1a;生产者发送消息后&#xff0c;等待服务器确认消息已经被接收。这种模式下&#xff0c;生产者发送消息后会阻塞&am…...

websocket服务端大报文发送连接自动断开分析

概述 当前springboot版本&#xff1a;2.7.4 使用依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency>现象概述&#xff1a; 客户端和服务端已经有心跳…...

想写几个上位机,是选择学c#还是 c++ qt呢?

C#基本也就上位机开发开发&#xff0c;另外做做日常用的小工具很方便。 结合PLC&#xff0c;以太网做上位机&#xff0c;这个基本上控制这块都比较有需求。 另外我们用C#也做一些工具的二次开发&#xff0c;感觉还行。 C用qt框架其实学习起来可能稍微复杂些&#xff0c;但是…...

JavaScript 简单实现观察者模式和发布-订阅模式

JavaScript 简单实现观察者模式和发布-订阅模式 1. 观察者模式1.1 什么是观察者模式1.2 代码实现 2. 发布-订阅模式2.1 什么是发布-订阅模式2.2 代码实现2.2.1 基础版2.2.2 取消订阅2.2.3 订阅一次 1. 观察者模式 1.1 什么是观察者模式 概念&#xff1a;观察者模式定义对象间…...

java集成短信服务 测试版 qq邮箱简单思路

java集成短信服务 注册一个帐号 使用的是容联云&#xff0c;百度搜一下官网 用手机注册一个帐号就行&#xff0c;免费体验不需要认证 注册后会有八块钱送&#xff0c;可以使用免费的给自己设置三个固定手机号发送短信&#xff0c;不需要认证。 此页面的 三个信息需要在代码中…...

#P0994. [NOIP2004普及组] 花生采摘

题目描述 鲁宾逊先生有一只宠物猴&#xff0c;名叫多多。这天&#xff0c;他们两个正沿着乡间小路散步&#xff0c;突然发现路边的告示牌上贴着一张小小的纸条&#xff1a;“欢迎免费品尝我种的花生&#xff01;――熊字”。 鲁宾逊先生和多多都很开心&#xff0c;因为花生正…...

Elasticsearch和Kibana的安装及验证

金翅大鹏盖世英&#xff0c;展翅金鹏盖世雄。 穿云燕子锡今鸽&#xff0c;踏雪无痕花云平。 ---------------- 2023.7.31.101 ----------------- 本文密钥&#xff1a;365 Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎&#xff0c;常用来进行全文检索、…...