势能线段树
目录
简单介绍
题目
1. 上帝造题的七分钟 2
2.SUM and REPLACE
3. And RMQ
总结
简单介绍

题目
1. 上帝造题的七分钟 2
链接:https://www.luogu.com.cn/problem/P4145
维护两种操作
1.区间开根号(下取整)
2.区间和询问
显然无法通过懒标记来计算区间开根号后的值,其由叶子结点本身的值决定。容易发现当一个数连续进行开根号操作会在很少的次数变为1,且值不再改变,1即为零势能点。因此我们可以维护区间max。一旦区间修改时发现此区间的max<=1时,我们不需要再次修改,直接return即可,否则向下递归修改。
Code:
#include<bits/stdc++.h>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
#define int long long
const int N=1e5+10;
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r) {if(tr[u].mx<=1) return ;if(tr[u].l==tr[u].r) {tr[u].mx=sqrt(tr[u].mx);tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r);if(r>mid) modify(u<<1|1,l,r);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].sum;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res+=query(u<<1,l,r);if(r>mid) res+=query(u<<1|1,l,r);return res;}void pushup(int u) {tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
}ST;
signed main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);int n,m;cin>>n;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);cin>>m;while(m--) {int op,l,r;cin>>op>>l>>r;if(l>r) swap(l,r);if(op==0) ST.modify(1,l,r);else cout<<ST.query(1,l,r)<<endl; }
}
2.SUM and REPLACE
链接:https://codeforces.com/contest/920/problem/F
定义f(x)为x因子的数量
维护三种操作
1.区间修改x=f(x)
2.区间和查询
手动模拟f(x)可以发现,进行f(x)操作,数值单调不增,且x<=2时,其值不在改变,因此同上题一样维护区间最大值即可。f(x)可以O(nlogn)时间预处理出来。
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
#define int long long
const int N=3e5+10,M=1e6+10;
int d[M+1];
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r) {if(tr[u].mx<=2) return ;if(tr[u].l==tr[u].r) {tr[u].mx=d[tr[u].mx];tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r);if(r>mid) modify(u<<1|1,l,r);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].sum;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res+=query(u<<1,l,r);if(r>mid) res+=query(u<<1|1,l,r);return res;}void pushup(int u) {tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
};
signed main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);for(int i=1;i<=M;i++) { //预处理for(int j=i;j<=M;j+=i) {d[j]++;}}int n,m;cin>>n>>m;segment_tree ST;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);while(m--) {int op,l,r;cin>>op>>l>>r;if(op==1) ST.modify(1,l,r);else cout<<ST.query(1,l,r)<<endl;}
}
3. And RMQ
链接:
维护三个操作
1.区间按位与x
2.区间最大值
3.单点修改
这题零势能点藏得较深,我们考虑将x二进制展开,发现在x的二进制位为零的位置,区间所有数的二进制位也为零,则操作可以忽略。维护区间或
当 orsum & x =orsum,则直接return
Code:
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
const int N=4e5+10;
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r,int x) {if((tr[u].sum&x)==tr[u].sum) return ;if(tr[u].l==tr[u].r) {tr[u].mx=tr[u].mx&x;tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r,x);if(r>mid) modify(u<<1|1,l,r,x);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].mx;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res=max(res,query(u<<1,l,r));if(r>mid) res=max(res,query(u<<1|1,l,r));return res;}void update(int u,int k,int x) {if(tr[u].l==tr[u].r) {tr[u].mx=tr[u].sum=x;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(k<=mid) update(u<<1,k,x);else update(u<<1|1,k,x);pushup(u);}void pushup(int u) {tr[u].sum=tr[u<<1].sum|tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
}ST;
int main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);int n,m;cin>>n>>m;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);while(m--) {int l,r,x;string op;cin>>op;if(op=="AND") {cin>>l>>r>>x;ST.modify(1,l,r,x);}else if(op=="UPD") {cin>>l>>x;ST.update(1,l,x);}else {cin>>l>>r;cout<<ST.query(1,l,r)<<endl;}}
}
总结
1.对于区间修改操作,修改操作会使得值在趋向零势能点前严格单调减少,在变为零势能点后不在变化。需要维护一个值来界定是否到达零势能
2.且题目不能出现其他非单调的区间修改操作,如区间加,区间乘等。如果有其他修改操作,可以通过构造形如 update1 ,update 2,update 1,update 2 的数据破坏单调性,从而使操作1复杂度变为暴力修改的O(nlogn)
相关文章:
势能线段树
目录 简单介绍 题目 1. 上帝造题的七分钟 2 2.SUM and REPLACE 3. And RMQ 总结 简单介绍 题目 1. 上帝造题的七分钟 2 链接:https://www.luogu.com.cn/problem/P4145 维护两种操作 1.区间开根号(下取整) 2.区间和询问 显然无法通过懒标记来计算区间开根号…...
【phaser微信抖音小游戏开发004】往画布上增加文本以及文本的操作
我们在states中创建st004.js的类,或者将states中的index.js直接重命名为st004.js,把里面的类名也修改为st004.如下图 在main.js中,引入st004,并设置启用的state为st004。如下图 接下来到states/st004里面,在create里面将文本修改一…...
【1.4】Java微服务:服务注册和调用(Eureka和Ribbon实现)
✅作者简介:大家好,我是 Meteors., 向往着更加简洁高效的代码写法与编程方式,持续分享Java技术内容。 🍎个人主页:Meteors.的博客 💞当前专栏: 微服务 ✨特色专栏: 知识分享 &#x…...
QT中使用ffmpeg的api进行视频的播放
在了解ffmpeg使用api进行视频的播放之前,我们首先了解一下视频的播放流程。 一、视频的播放流程 首先是我们最常见的视频文件,在播放流程中首先是要打开视频文件,将视频文件中的数据进行解封装,之后再将解封装之后的视频进行解码…...
使用idea实现git操作大全(在项目开发中遇到的实际情况
使用idea实现git操作大全(在项目开发中遇到的实际情况) 1.安装git插件2.在开发中切记拉一个自己的分支 1.安装git插件 2.在开发中切记拉一个自己的分支 选中需要拉的分支,右键该分支,选中new breach from “分支”,点…...
SQL面试题:一个优化案例
问题描述 假如存在以下两个表: CREATE TABLE customer ( C_CUSTKEY int NOT NULL, C_NAME varchar(25) NOT NULL, C_ADDRESS varchar(40) NOT NULL, C_NATIONKEY int NOT NULL, C_PHONE char(15) NOT NULL, C_ACCTBAL decimal(15,2) NOT NULL, C_MKTSEGMENT char(…...
链表的总体涵盖以及无哨兵位单链表实现——【数据结构】
😊W…Y:个人主页 在学习之前看一下美丽的夕阳,也是很不错的。 如果觉得博主的美景不错,博客也不错的话,关注一下博主吧💕 在上一期中,我们说完了顺序表,并且提出顺序表中的问题 1. 中…...
网页版Java五子棋项目(一)websocket【服务器给用户端发信息】
网页版Java五子棋项目(一)websocket【服务器给用户端发信息】 一、为什么要用websocket二、websocket介绍原理解析 三、代码演示1. 创建后端api(TestAPI)新增知识点:extends TextWebSocketHandler重写各种方法 2. 建立…...
企业大数据可视化案例专题分享-入门
一、什么是数据可视化? 基本概念:数据可视化是以图示或图形格式表示的数据。让决策者可以看到以直观方式呈现的分析,以便他们可以掌握困难的概念或识别新的模式。借助交互式可视化,可以使用技术深入挖掘图表和图形以获取更多详细…...
GoogLeNet卷积神经网络-笔记
GoogLeNet卷积神经网络-笔记 GoogLeNet是2014年ImageNet比赛的冠军, 它的主要特点是网络不仅有深度, 还在横向上具有“宽度”。 由于图像信息在空间尺寸上的巨大差异, 如何选择合适的卷积核来提取特征就显得比较困难了。 空间分布范围更广的…...
腾讯云TencentOS Server镜像系统常见问题解答
腾讯云TencentOS Server镜像是腾讯云推出的Linux操作系统,完全兼容CentOS生态和操作方式,TencentOS Server操作系统为云上运行的应用程序提供稳定、安全和高性能的执行环境,TencentOS可以运行在腾讯云CVM全规格实例上,包括黑石物理…...
【项目 进程13】2.28共享内存(1) 2.29共享内存(2)
文章目录 2.28共享内存(1)共享内存(效率最高,比内存映射更高。因为内存映射还需一个文件做载体)共享内存使用步骤共享内存操作函数头文件 2.29共享内存(2)共享内存相关问题共享内存和内存映射的…...
Flask框架-流量控制:flask-limiter的使用
一、flask使用flask-limiter存在版本问题 Flask1.1.4 Flask-Bootstrap3.3.7.1 Flask-Caching1.9.0 Flask-Cors3.0.10 Flask-Limiter1.4 Flask-Migrate2.5.3 Flask-RESTful0.3.8 Flask-Script2.0.6 Flask-SocketIO5.0.1 Flask-Sockets0.2.1 Flask-SQLAlchemy2.4.4 Jinjia22.11.…...
【机器学习】西瓜书习题3.5Python编程实现线性判别分析,并给出西瓜数据集 3.0α上的结果
参考代码 结合自己的理解,添加注释。 代码 导入相关的库 import numpy as np import pandas as pd import matplotlib from matplotlib import pyplot as plt导入数据,进行数据处理和特征工程 得到数据集 D { ( x i , y i ) } i 1 m , y i ∈ { 0 ,…...
Elasticsearch:通过动态修剪实现更快的基数聚合
作者:Adrien Grand Elasticsearch 8.9 通过支持动态修剪(dynamic pruning)引入了基数聚合加速。 这种优化需要满足特定的条件才能生效,但一旦实现,通常会产生惊人的结果。 我们观察到,通过此更改࿰…...
Webpack5 生产模式压缩图片ImageMinimizerPlugin
文章目录 一、 ImageMinimizerPlugin是什么?二、已经有了asset,为什么需要ImageMinimizerPlugin?三、怎么使用ImageMinimizerPlugin?四、ImageMinimizerPlugin压缩的成果 一、 ImageMinimizerPlugin是什么? 它的实际依…...
时序预测 | Matlab实现基于BP神经网络的电力负荷预测模型
文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 时序预测 | Matlab实现基于BP神经网络的电力负荷预测模型 BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。B...
基于回溯算法实现八皇后问题
八皇后问题是一个经典的计算机科学问题,它的目标是将8个皇后放置在一个大小为88的棋盘上,使得每个皇后都不会攻击到其他的皇后。皇后可以攻击同一行、同一列和同一对角线上的棋子。 一、八皇后问题介绍 八皇后问题最早由国际西洋棋大师马克斯贝瑟尔在18…...
Linux【网络编程】之深入理解TCP协议
Linux【网络编程】之深入理解TCP协议 TCP协议TCP协议段格式4位首部长度---TCP报头长度信息 TCP可靠性(确认应答)&& 提高传输效率确认应答(ACK)机制32位序号与32为确认序号 16位窗口大小---自己接收缓冲区剩余空间的大小16位紧急指针---紧急数据处…...
如何克服看到别人优于自己而感到的焦虑和迷茫?
文章目录 每日一句正能量前言简述自己的感受怎么做如何调整自己的心态后记 每日一句正能量 行动是至于恐惧的良药,而犹豫、拖延,将不断滋养恐惧。 前言 虽然清楚知识需要靠时间沉淀,但在看到自己做不出来的题别人会做,自己写不出的…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...
深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...
Oracle实用参考(13)——Oracle for Linux物理DG环境搭建(2)
13.2. Oracle for Linux物理DG环境搭建 Oracle 数据库的DataGuard技术方案,业界也称为DG,其在数据库高可用、容灾及负载分离等方面,都有着非常广泛的应用,对此,前面相关章节已做过较为详尽的讲解,此处不再赘述。 需要说明的是, DG方案又分为物理DG和逻辑DG,两者的搭建…...
【Java基础】向上转型(Upcasting)和向下转型(Downcasting)
在面向对象编程中,转型(Casting) 是指改变对象的引用类型,主要涉及 继承关系 和 多态。 向上转型(Upcasting) ⬆️ 定义 将 子类对象 赋值给 父类引用(自动完成,无需强制转换&…...
