【机器学习】西瓜书习题3.5Python编程实现线性判别分析,并给出西瓜数据集 3.0α上的结果
参考代码
结合自己的理解,添加注释。
代码
- 导入相关的库
import numpy as np
import pandas as pd
import matplotlib
from matplotlib import pyplot as plt
- 导入数据,进行数据处理和特征工程
得到数据集 D = { ( x i , y i ) } i = 1 m , y i ∈ { 0 , 1 } D=\{ (x_i,y_i) \}_{i=1}^m, y_i \in \{0,1\} D={(xi,yi)}i=1m,yi∈{0,1}
# 1.数据处理,特征工程
data_path = 'watermelon3_0_Ch.csv'
data = pd.read_csv(data_path).values
# 按照数据集3.0α,强制转换数据类型
X = data[:,7:9].astype(float)
y = data[:,9]
y[y=='是'] = 1
y[y=='否'] = 0
y = y.astype(int)
- 计算西瓜书60页中的 X i 、 μ i 、 Σ i X_{i}、\mu_i、\Sigma_i Xi、μi、Σi
# 将X的数据根据label值分成X0和X1
pos = y == 1
neg = y == 0
X0 = X[neg]
X1 = X[pos]# 计算u0,u1 keepdims保持原数据维数
u0 = X0.mean(0, keepdims=True)
u1 = X1.mean(0, keepdims=True)# 计算sigma0,sigma1
sigma0 = np.dot((X0-u0).T,X0-u0)
sigma1 = np.dot((X1-u1).T,X1-u1)
- 根据式3.33计算类内散度矩阵
S w = Σ 0 + Σ 1 = ∑ x ∈ X 0 ( x − μ 0 ) ( x − μ 0 ) T + ∑ x ∈ X 1 ( x − μ 1 ) ( x − μ 1 ) T S_w=\Sigma_0+\Sigma_1=\sum_{x\in X_{0}}(x-\mu_0)(x-\mu_0)^T+\sum_{x\in X_{1}}(x-\mu_1)(x-\mu_1)^T Sw=Σ0+Σ1=x∈X0∑(x−μ0)(x−μ0)T+x∈X1∑(x−μ1)(x−μ1)T
根据式3.39计算 w w w
w = S w − 1 ( μ 0 − μ 1 ) w=S_w^{-1}(\mu_0-\mu_1) w=Sw−1(μ0−μ1)
# 计算类内散度矩阵 with-class scatter matrix
sw = sigma0 + sigma1# numpy.linalg.inv() 函数来计算矩阵的逆
w = np.dot(np.linalg.inv(sw),(u0-u1).T).reshape(1,-1)
- 画出样本点和得到的直线
fig, ax = plt.subplots()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data', 0))plt.scatter(X1[:, 0], X1[:, 1], c='k', marker='o', label='good')
plt.scatter(X0[:, 0], X0[:, 1], c='r', marker='x', label='bad')plt.xlabel('密度', labelpad=1)
plt.ylabel('含糖量')
plt.legend(loc='upper right')x_tmp = np.linspace(-0.05, 0.15)
y_tmp = x_tmp * w[0, 1] / w[0, 0]
plt.plot(x_tmp, y_tmp, '#808080', linewidth=1)
得到下图
- 计算每个样本点在直线上的投影
计算的理解参考这篇文章
# 求w这个向量的 单位向量 wu
# np.linalg.norm()默认求2 范数,表示向量中各个元素平方和 的 1/2 次方,L2 范数又称 Euclidean 范数或者 Frobenius 范数。
wu = w / np.linalg.norm(w)# 正负样本点
# 求负样本的投影点,并连线
X0_project = np.dot(X0, np.dot(wu.T, wu))
plt.scatter(X0_project[:, 0], X0_project[:, 1], c='r', s=15)
for i in range(X0.shape[0]):plt.plot([X0[i, 0], X0_project[i, 0]], [X0[i, 1], X0_project[i, 1]], '--r', linewidth=1)# 求正样本的投影点,并连线
X1_project = np.dot(X1, np.dot(wu.T, wu))
plt.scatter(X1_project[:, 0], X1_project[:, 1], c='k', s=15)
for i in range(X1.shape[0]):plt.plot([X1[i, 0], X1_project[i, 0]], [X1[i, 1], X1_project[i, 1]], '--k', linewidth=1)
得到下图
将上述代码封装成类,如下:
class LDA(object):def fit(self, X_, y_, plot_=False):pos = y_ == 1neg = y_ == 0X0 = X_[neg]X1 = X_[pos]u0 = X0.mean(0, keepdims=True) # (1, n)u1 = X1.mean(0, keepdims=True)sw = np.dot((X0 - u0).T, X0 - u0) + np.dot((X1 - u1).T, X1 - u1)w = np.dot(np.linalg.inv(sw), (u0 - u1).T).reshape(1, -1) # (1, n)if plot_:# 设置字体为楷体plt.rcParams['axes.unicode_minus']=False #用来正常显示负号plt.rcParams['font.sans-serif'] = ['KaiTi']fig, ax = plt.subplots()ax.spines['right'].set_color('none')ax.spines['top'].set_color('none')ax.spines['left'].set_position(('data', 0))ax.spines['bottom'].set_position(('data', 0))plt.scatter(X1[:, 0], X1[:, 1], c='k', marker='o', label='good')plt.scatter(X0[:, 0], X0[:, 1], c='r', marker='x', label='bad')plt.xlabel('密度', labelpad=1)plt.ylabel('含糖量')plt.legend(loc='upper right')x_tmp = np.linspace(-0.05, 0.15)y_tmp = x_tmp * w[0, 1] / w[0, 0]plt.plot(x_tmp, y_tmp, '#808080', linewidth=1)wu = w / np.linalg.norm(w)# 正负样板店X0_project = np.dot(X0, np.dot(wu.T, wu))plt.scatter(X0_project[:, 0], X0_project[:, 1], c='r', s=15)for i in range(X0.shape[0]):plt.plot([X0[i, 0], X0_project[i, 0]], [X0[i, 1], X0_project[i, 1]], '--r', linewidth=1)X1_project = np.dot(X1, np.dot(wu.T, wu))plt.scatter(X1_project[:, 0], X1_project[:, 1], c='k', s=15)for i in range(X1.shape[0]):plt.plot([X1[i, 0], X1_project[i, 0]], [X1[i, 1], X1_project[i, 1]], '--k', linewidth=1)# 中心点的投影u0_project = np.dot(u0, np.dot(wu.T, wu))plt.scatter(u0_project[:, 0], u0_project[:, 1], c='#FF4500', s=60)u1_project = np.dot(u1, np.dot(wu.T, wu))plt.scatter(u1_project[:, 0], u1_project[:, 1], c='#696969', s=60)ax.annotate(r'u0 投影点',xy=(u0_project[:, 0], u0_project[:, 1]),xytext=(u0_project[:, 0] - 0.2, u0_project[:, 1] - 0.1),size=13,va="center", ha="left",arrowprops=dict(arrowstyle="->",color="k",))ax.annotate(r'u1 投影点',xy=(u1_project[:, 0], u1_project[:, 1]),xytext=(u1_project[:, 0] - 0.1, u1_project[:, 1] + 0.1),size=13,va="center", ha="left",arrowprops=dict(arrowstyle="->",color="k",))plt.axis("equal") # 两坐标轴的单位刻度长度保存一致plt.show()self.w = wself.u0 = u0self.u1 = u1return selfdef predict(self, X):project = np.dot(X, self.w.T)wu0 = np.dot(self.w, self.u0.T)wu1 = np.dot(self.w, self.u1.T)return (np.abs(project - wu1) < np.abs(project - wu0)).astype(int)
相关文章:

【机器学习】西瓜书习题3.5Python编程实现线性判别分析,并给出西瓜数据集 3.0α上的结果
参考代码 结合自己的理解,添加注释。 代码 导入相关的库 import numpy as np import pandas as pd import matplotlib from matplotlib import pyplot as plt导入数据,进行数据处理和特征工程 得到数据集 D { ( x i , y i ) } i 1 m , y i ∈ { 0 ,…...

Elasticsearch:通过动态修剪实现更快的基数聚合
作者:Adrien Grand Elasticsearch 8.9 通过支持动态修剪(dynamic pruning)引入了基数聚合加速。 这种优化需要满足特定的条件才能生效,但一旦实现,通常会产生惊人的结果。 我们观察到,通过此更改࿰…...
Webpack5 生产模式压缩图片ImageMinimizerPlugin
文章目录 一、 ImageMinimizerPlugin是什么?二、已经有了asset,为什么需要ImageMinimizerPlugin?三、怎么使用ImageMinimizerPlugin?四、ImageMinimizerPlugin压缩的成果 一、 ImageMinimizerPlugin是什么? 它的实际依…...

时序预测 | Matlab实现基于BP神经网络的电力负荷预测模型
文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 时序预测 | Matlab实现基于BP神经网络的电力负荷预测模型 BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。B...

基于回溯算法实现八皇后问题
八皇后问题是一个经典的计算机科学问题,它的目标是将8个皇后放置在一个大小为88的棋盘上,使得每个皇后都不会攻击到其他的皇后。皇后可以攻击同一行、同一列和同一对角线上的棋子。 一、八皇后问题介绍 八皇后问题最早由国际西洋棋大师马克斯贝瑟尔在18…...

Linux【网络编程】之深入理解TCP协议
Linux【网络编程】之深入理解TCP协议 TCP协议TCP协议段格式4位首部长度---TCP报头长度信息 TCP可靠性(确认应答)&& 提高传输效率确认应答(ACK)机制32位序号与32为确认序号 16位窗口大小---自己接收缓冲区剩余空间的大小16位紧急指针---紧急数据处…...

如何克服看到别人优于自己而感到的焦虑和迷茫?
文章目录 每日一句正能量前言简述自己的感受怎么做如何调整自己的心态后记 每日一句正能量 行动是至于恐惧的良药,而犹豫、拖延,将不断滋养恐惧。 前言 虽然清楚知识需要靠时间沉淀,但在看到自己做不出来的题别人会做,自己写不出的…...

浅谈React中的ref和useRef
目录 什么是useRef? 使用 ref 访问 DOM 元素 Ref和useRef之间的区别 Ref和useRef的使用案例 善用工具 结论 在各种 JavaScript 库和框架中,React 因其开发人员友好性和支持性而得到认可。 大多数开发人员发现 React 非常舒适且可扩展,…...
Linux C 获取主机网卡名及 IP 的几种方法
在进行 Linux 网络编程时,经常会需要获取本机 IP 地址,除了常规的读取配置文件外,本文罗列几种个人所知的编程常用方法,仅供参考,如有错误请指出。 方法一:使用 ioctl() 获取本地 IP 地址 Linux 下可以使用…...

解密外接显卡:笔记本能否接外置显卡?如何连接外接显卡?
伴随着电脑游戏和图形处理的需求不断增加,很多笔记本电脑使用者开始考虑是否能够通过外接显卡来提升性能。然而,外接显卡对于笔记本电脑是否可行,以及如何连接外接显卡,对于很多人来说仍然是一个迷。本文将为您揭秘外接显卡的奥秘…...

list与erase()
运行代码: //list与erase() #include"std_lib_facilities.h" //声明Item类 struct Item {string name;int iid;double value;Item():name(" "),iid(0),value(0.0){}Item(string ss,int ii,double vv):name(ss),iid(ii),value(vv){}friend istr…...

Arcgis 分区统计majority参数统计问题
利用Arcgis 进行分区统计时,需要统计不同矢量区域中栅格数据的众数(majority),出现无法统计majority参数问题解决 解决:利用copy raster工具,将原始栅格数据 64bit转为16bit...

vue2+wangEditor5富文本编辑器(图片视频自定义上传七牛云/服务器)
1、安装使用 安装 yarn add wangeditor/editor # 或者 npm install wangeditor/editor --save yarn add wangeditor/editor-for-vue # 或者 npm install wangeditor/editor-for-vue --save在main.js中引入样式 import wangeditor/editor/dist/css/style.css在使用编辑器的页…...

shell脚本练习--安全封堵脚本,使用firewalld实现
一.什么是安全封堵 安全封堵(security hardening)是指采取一系列措施来增强系统的安全性,防止潜在的攻击和漏洞利用。以下是一些常见的安全封堵措施: 更新和修补系统:定期更新操作系统和软件包以获取最新的安全补丁和修…...
双端冒泡排序
双端冒泡排序是对传统冒泡排序的改进,其主要改进在于同时从两端开始排序,相对于传统冒泡排序每次只从一端开始排序,这样可以减少排序的遍历次数。 传统冒泡排序从一端开始,每次将最大(或最小)的元素冒泡到…...

如何在Visual Studio Code中用Mocha对TypeScript进行测试
目录 使用TypeScript编写测试用例 在Visual Studio Code中使用调试器在线调试代码 首先,本文不是一篇介绍有关TypeScript、JavaScript或其它编程语言数据结构和算法的文章。如果你正在准备一场面试,或者学习某一个课程,互联网上可以找到许多…...
GO中Json的解析
一个json字串,想要拿到其中的数据,就需要解析出来 一、适用于json数据的结构已知的情况下 使用json.Unmarshal将json数据解析到结构体中 根据json字串数据的格式定义struct,用来保存解码后的值。这里首先定义了一个与要解析的数据结构一样的…...
chatgpt 提示词-关于数据科学的 75个词语
这里有 75 个 chatgpt 提示,可以立即将其用于数据科学或数据分析等。 1. 伪装成一个SQL终端 提示:假设您是示例数据库前的 SQL 终端。该数据库包含名为“用户”、“项目”、“订单”、“评级”的表。我将输入查询,您将用终端显示的内容进行…...

(自控原理)控制系统的数学模型
目录 一、时域数学模型 1、线性元件微分方程的建立 2、微分方程的求解方法编辑 3、非线性微分方程的线性化 二、复域数学模型 1、传递函数的定义 2、传递函数的标准形式 3、系统的典型环节的传递函数 4、传递函数的性质 5、控制系统数学模型的建立 6、由传递函数求…...
Webpack5 cacheGroups
文章目录 一、 cacheGroups是什么?二、怎么使用cacheGroups?三、cacheGroups实际应用之一? 一、 cacheGroups是什么? 在Webpack 5中,cacheGroups是用于配置代码拆分的规则,它可以帮助你更细粒度地控制生成…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...

uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...