RDD的持久化【博学谷学习记录】
RDD的缓存
缓存:
一般当一个RDD的计算非常的耗时|昂贵(计算规则比较复杂),或者说这个RDD需要被重复(多方)使用,此时可以将这个RDD计算完的结果缓存起来, 便于后续的使用, 从而提升效率
通过缓存也可以提升RDD的容错能力, 当后续计算失败后, 尽量不让RDD进行回溯所有的依赖链条, 从而减少重新计算时间
注意:
缓存仅仅是一种临时的存储, 缓存数据可以保存到内存(executor内存空间),也可以保存到磁盘中, 甚至支持将缓存数据保存到堆外内存中(executor以外的系统内容)
由于临时存储, 可能会存在数据丢失, 所以缓存操作, 并不会将RDD之间的依赖关系给截断掉(丢失掉),因为当缓存失效后, 可以基于原有依赖关系重新计算
缓存的API都是LAZY的, 如果需要触发缓存操作, 必须后续跟上一个action算子, 一般建议使用count
如果不添加action算子, 只有当后续遇到第一个action算子后, 才会触发缓存
如何使用缓存
设置缓存的API:
rdd.cache(): 执行缓存操作 仅能将数据缓存到内存中
rdd.persist(缓存的级别(位置)): 执行缓存操作, 默认将数据缓存到内存中, 当然也可以自定义缓存位置
手动清理缓存的API:
rdd.unpersist()
默认情况下, 当整个Spark应用程序执行完成后, 缓存也会自动失效的, 自动删除
常用的缓存级别:
MEMORY_ONLY : 仅缓存到内存中
DISK_ONLY: 仅缓存到磁盘
MEMORY_AND_DISK: 内存 + 磁盘 优先缓存到内存中, 当内存不足的时候, 剩余数据缓存到磁盘中
OFF_HEAP: 缓存到堆外内存
最为常用的: MEMORY_AND_DISK
import timeimport jieba
from pyspark import SparkContext, SparkConf, StorageLevel
import os# 锁定远端环境, 确保环境统一
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'
"""清洗需求: 需要先对数据进行清洗转换处理操作, 清洗掉为空的数据, 以及数据字段个数不足6个的数据, 并且将每一行的数据放置到一个元组中, 元组中每一个元素就是一个字段的数据
"""def xuqiu1():# 需求一: 统计每个关键词出现了多少次, 获取前10个res = rdd_map \.flatMap(lambda field_tuple: jieba.cut(field_tuple[2])) \.map(lambda keyWord: (keyWord, 1)) \.reduceByKey(lambda agg, curr: agg + curr) \.sortBy(lambda res_tup: res_tup[1], ascending=False).take(10)print(res)def xuqiu2():res = rdd_map \.map(lambda field_tuple: ((field_tuple[1], field_tuple[2]), 1)) \.reduceByKey(lambda agg, curr: agg + curr) \.top(10, lambda res_tup: res_tup[1])print(res)if __name__ == '__main__':print("Spark的Python模板")# 1. 创建SparkContext核心对象conf = SparkConf().setAppName('sougou').setMaster('local[*]')sc = SparkContext(conf=conf)# 2. 读取外部文件数据rdd = sc.textFile(name='file:///export/data/workspace/ky06_pyspark/_02_SparkCore/data/SogouQ.sample')# 3. 执行相关的操作:# 3.1 执行清洗操作rdd_filter = rdd.filter(lambda line: line.strip() != '' and len(line.split()) == 6)rdd_map = rdd_filter.map(lambda line: (line.split()[0],line.split()[1],line.split()[2][1:-1],line.split()[3],line.split()[4],line.split()[5]))# 由于 rdd_map 被多方使用了, 此时可以将其设置为缓存rdd_map.persist(storageLevel=StorageLevel.MEMORY_AND_DISK).count()# 3.2 : 实现需求# 需求一: 统计每个关键词出现了多少次, 获取前10个# 快速抽取函数: ctrl + alt + Mxuqiu1()# 当需求1执行完成, 让缓存失效rdd_map.unpersist().count()# 需求二:统计每个用户每个搜索词点击的次数xuqiu2()time.sleep(100)RDD的checkpoint检查点
checkpoint比较类似于缓存操作, 只不过缓存是将数据保存到内存 或者 磁盘上, 而checkpoint是将数据保存到磁盘或者HDFS(主要)上
checkpoint提供了更加安全可靠的持久化的方案, 确保RDD的数据不会发生丢失, 一旦构建checkpoint操作后, 会将RDD之间的依赖关系(血缘关系)进行截断,后续计算出来了问题, 可以直接从检查点的位置恢复数据
主要作用: 容错 也可以在一定程度上提升效率(性能) (不如缓存)
在后续计算失败后, 从检查点直接恢复数据, 不需要重新计算
相关的API:
第一步: 设置检查点保存数据位置
sc.setCheckpointDir('路径地址')
第二步: 在对应RDD开启检查点
rdd.checkpoint()
rdd.count()
注意:
如果运行在集群模式中, checkpoint的保存的路径地址必须是HDFS, 如果是local模式 可以支持在本地路径
checkpoint数据不会自动删除, 必须同时手动方式将其删除掉
相关文章:
RDD的持久化【博学谷学习记录】
RDD的缓存缓存: 一般当一个RDD的计算非常的耗时|昂贵(计算规则比较复杂),或者说这个RDD需要被重复(多方)使用,此时可以将这个RDD计算完的结果缓存起来, 便于后续的使用, 从而提升效率通过缓存也可以提升RDD的容错能力, 当后续计算失败后, 尽量不让RDD进行回溯所有的依赖链条, 从…...
Python3 正则表达式
Python3 正则表达式 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。 Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式。 re 模块使 Python 语言拥有全部的正则表达式功能。 compile 函数根…...
Qt-基础
Qt1. 概念其他概念对话框模态对话框与非模态对话框事件事件拦截/过滤事件例子鼠标/屏幕使用界面功能qt-designer工具debug目录结构mainwindow控件窗口QMainWindow事件2. 项目概览QOBJECT tree 对象树3. 信号和槽信号函数关联自定义信号和槽函数自定义信号和槽函数1自定义信号和…...
ABB机器人将实时坐标发送给西门子PLC的具体方法示例
ABB机器人将实时坐标发送给西门子PLC的具体方法示例 本次以PROFINET通信为例进行说明,演示ABB机器人将实时坐标发送给西门子PLC的具体方法。 首先,要保证ABB机器人和PLC的信号地址分配已经完成,具体的内容可参考以下链接: S7-1200PLC与ABB机器人进行PROFINET通信的具体方法…...
反向传播与梯度下降详解
一,前向传播与反向传播 1.1,神经网络训练过程 神经网络训练过程是: 先通过随机参数“猜“一个结果(模型前向传播过程),这里称为预测结果 a a a;然后计算 a a a 与样本标签值...
Skywalking ui页面功能介绍
菜单栏 仪表盘:查看被监控服务的运行状态; 拓扑图:以拓扑图的方式展现服务之间的关系,并以此为入口查看相关信息; 追踪:以接口列表的方式展现,追踪接口内部调用过程; 性能剖析&am…...
哪里可以找到免费的 PDF 阅读编辑器?7 个免费 PDF 阅读编辑器分享
如果您曾经需要编辑 PDF,您可能会发现很难找到免费的 PDF 编辑器。幸运的是,您可以使用在线资源来编辑该文档,而无需为软件付费。 在本文中,我将介绍七种不同的 PDF 编辑器,它们至少可以让您免费编辑几个文件。我通过…...
使用梯度下降的线性回归(Matlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨💻4 Matlab代码 💥1 概述 梯度下降法,是一种基于搜索的最优化方法,最用是最小化一个损失函数。梯度下降是迭代法的一种,可以用于求…...
在Ubuntu上设置MySQL可以远程登录
在Ubuntu上设置MySQL可以远程登录一.设置数据库二.设置防火墙由于Ubuntu查看修改MySQL不是很方便,想着在虚拟机安装的Windows系统或者局域网中的其他电脑上去查看Ubuntu系统上的数据库,这样省事一些,我电脑安装的数据库是MySQL8。一.设置数据…...
清风1.层次分析法
一.流程1.建立评价体系2.建立判断矩阵2.1 A-C-C矩阵从准则层对目标层的特征向量上看,花费的权重最大算术平均法求权重的结果为:0.26230.47440.05450.09850.1103几何平均法求权重的结果为:0.26360.47730.05310.09880.1072特征值法求权重的结果…...
「首席架构师推荐」免费数据可视化软件你喜欢哪一个?
数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。它是一个处于不断演变之中的概念,其边界在不断地扩大…...
深度学习术语解释:backbone、head、neck,etc
backbone:翻译为主干网络的意思,既然说是主干网络,就代表其是网络的一部分,那么是哪部分呢?这个主干网络大多时候指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络…...
基础篇—CSS margin(外边距)解析
什么是CSS margin(外边距)? CSS margin(外边距)属性定义元素周围的空间。 属性描述margin简写属性。在一个声明中设置所有外边距属性。margin-bottom设置元素的下外边距。margin-left设置元素的左外边距。margin-right设置元素的右外边距。margin-top设置元素的上外边距。mar…...
ChatGPT或将引发新一轮失业潮?是真的吗?
最近,要说有什么热度不减的话题,那ChatGPT必然榜上有名。据悉是这是由美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类…...
【Selenium学习】Selenium 中特殊元素操作
1.鼠标定位操作鼠标悬停,即当光标与其名称表示的元素重叠时触发的事件,在 Selenium 中将键盘鼠标操作封装在 Action Chains 类中。Action Chains 类的主要应用场景为单击鼠标、双击鼠标、鼠标拖曳等。部分常用的方法使用分类如下:• click(on…...
Spark相关的依赖冲突,后期持续更新总结
Spark相关的依赖冲突持续更新总结 Spark-Hive_2.11依赖报错 这个依赖是Spark开启支持hive SQL解析,其中2.11是Spark对应的Scala版本,如Spark2.4.7,对应的Scala版本是2.11.12;这个依赖会由于Spark内部调用的依赖guava的版本问题出…...
【每日一题Day122】LC1237找出给定方程的正整数解 | 双指针 二分查找
找出给定方程的正整数解【LC1237】 给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子未知,但它是单调递增函数&#…...
笔记本加装固态和内存条教程(超详细)
由于笔记本是几年前买的了,当时是4000,现在用起来感到卡顿,启动、运行速度特别慢,就决定换个固态硬盘,加个内存条,再给笔记本续命几年。先说一下加固态硬盘SSD的好处:1.启动快 2.读取延迟小 3.写…...
【Python】字典 - Dictionary
字典 - Dictionarykeys()values()items()get()获取文件中指定字符的个数进阶版:获取所有单词的频数进阶版:获取所有字符的频数函数内容keys()输出字典中的所有键values()输出字典中的所有值items()以元组的形式输出键值对get()获取字典中指定键的值 keys…...
LeetCode分类刷题----二叉树
二叉树1.二叉树的递归遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历2.二叉树的迭代遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历3.二叉树的层序遍历102.二叉树的层序遍历107.二叉树的层序遍历||199.二叉树的右视图637.二叉树的层平均…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
