当前位置: 首页 > news >正文

常见距离计算的Python实现

常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。

1.曼哈顿距离

也叫城市街区距离,是两点差向量的L1范数,也就是各元素的绝对值之和。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的曼哈顿距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ d=\sum_{i=1}^{n}{\left| x_i-y_i \right|} d=i=1nxiyi

Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sum(np.abs(A-B))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=1)  #ord为范数类型,取值1(一范数),2(二范数),np.inf(无穷范数),默认2。# 方式三:scipy库计算
dist3 = distance.cityblock(A,B)

2.欧式距离

是一种最常见的距离,也就是两点差向量的L2范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的欧式距离表示为
d = ∑ i = 1 n ( x i − y i ) 2 d=\sqrt{\sum_{i=1}^{n}{\left( x_i-y_i \right)^{2}}} d=i=1n(xiyi)2

Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sqrt(np.sum((A-B)**2))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=2)# 方式三:scipy库计算
dist3 = distance.euclidean(A,B)

3.切比雪夫距离

最大的维度内距离,是两点差向量的无穷范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的切比雪夫距离表示为
d = m a x ( ∣ x i − y i ∣ ) d=max\left( \left| x_i-y_i \right| \right) d=max(xiyi)
Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.max(np.abs(A-B))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=np.inf)# 方式三:scipy库计算
dist3 = distance.chebyshev(A,B)

4. 闵可夫斯基距离

是一种范式距离的统称,可表示为两点差向量的Lp范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的闵可夫斯基距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ p p d=\sqrt[p]{\sum_{i=1}^{n}{\left| x_i-y_i \right|^{p}}} d=pi=1nxiyip
Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:内置线性代数函数计算
dist1 = np.linalg.norm(A-B,ord=3)  # np.linalg.norm(A-B,ord=p)# 方式二:scipy库计算
dist2 = distance.minkowski(A,B,3)  # distance.minkowski(A,B,p)

5.汉明距离

衡量两个字符串之间的差异程度,对两个对象的向量元素逐个比较,差异的个数占总个数的比例。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的汉明距离表示为
d = 1 n ∑ i = 1 n I ( x i ≠ y i ) d=\frac{1}{n}\sum_{i=1}^{n}{I\left( x_i\ne y_i \right)} d=n1i=1nI(xi=yi)
其中I为指示函数,
I = { 1 i f ( x i ≠ y i ) 0 i f ( x i = y i ) \begin{equation} I= \left\{ \begin{array}{lr} 1 \quad if\left( x_i\ne y_i \right)&\\ 0 \quad if\left( x_i = y_i\right) \end{array} \right. \end{equation} I={1if(xi=yi)0if(xi=yi)
Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:scipy库计算
dist1 = distance.hamming(A,B)

6.余弦距离

也叫余弦相似度,是两点空间向量夹角的余弦值,是内积与模积的比值,用来衡量两向量间的差异程度。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的余弦距离表示为
d = c o s θ = < A , B > ∣ A ∣ ⋅ ∣ B ∣ = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 ⋅ ∑ i = 1 n y i 2 \begin{align} d&=cos\theta=\frac{<A,B>}{\left| A \right|\cdot\left| B \right|} \\ &=\frac{\sum_{i=1}^{n}{x_iy_i}}{\sqrt{\sum_{i=1}^{n}{x_i^{2}}}\cdot\sqrt{\sum_{i=1}^{n}{y_i^{2}}}} \end{align} d=cosθ=AB<A,B>=i=1nxi2 i=1nyi2 i=1nxiyi
Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sum(A*B)/(np.sqrt(np.sum(A**2))*np.sqrt(np.sum(B**2)))# 方式二:scipy库计算
dist2 = 1-distance.cosine(A,B)

End.


参考:
https://blog.csdn.net/lemonbit/article/details/129053257

相关文章:

常见距离计算的Python实现

常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等&#xff0c;用Python实现计算的方式有多种&#xff0c;可以直接构造公式计算&#xff0c;也可以利用内置线性代数函数计算&#xff0c;还可以利用scipy库计算。 1.曼哈顿距离 也叫城市…...

开发运营监控

DevOps 监控使管理员能够实时了解生产环境中的元素&#xff0c;并有助于确保应用程序平稳运行&#xff0c;同时提供最高的业务价值&#xff0c;对于采用 DevOps 文化和方法的公司来说&#xff0c;这一点至关重要。 什么是开发运营监控 DevOps 通过持续开发、集成、测试、监控…...

食品小程序的制作教程

在今天的互联网时代&#xff0c;小程序已经成为了各行业推广和销售的重要途径。特别是对于食品行业来说&#xff0c;拥有一个专属的小程序商城可以带来更多的用户和销售机会。那么&#xff0c;如何制作一个完美的食品小程序呢&#xff1f;下面就跟随我来一步步教你&#xff0c;…...

Kubernetes(K8s)从入门到精通系列之十三:软件负载平衡选项

Kubernetes K8s从入门到精通系列之十三&#xff1a;软件负载平衡选项 一、软件负载平衡选项二、keepalived and haproxy三、keepalived配置四、haproxy配置五、选项 1&#xff1a;在操作系统上运行服务六、选项 2&#xff1a;将服务作为静态 Pod 运行 一、软件负载平衡选项 当…...

数据特征选择 | Matlab实现具有深度度量学习的时频特征嵌入

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 数据特征选择 | Matlab实现具有深度度量学习的时频特征嵌入。 深度度量学习尝试学习非线性特征嵌入或编码器,它可以减少来自同一类的示例之间的距离(度量)并增加来自不同类的示例之间的距离。 以这种方式工作的…...

浅谈webpack

文章目录 Webpackwebpack的工作原理webpack的构建流程Webpack的基本功能有哪些Webpack常用配置 Webpack Webpack是一个现代的JavaScript应用程序静态模块打包工具。它是一个用于构建和打包前端资源的工具&#xff0c;可以将多个模块和资源&#xff08;如JavaScript、CSS、图片…...

【 stable diffusion LORA模型训练最全最详细教程】

个人网站&#xff1a;https://tianfeng.space/ 文章目录 一、前言二、朱尼酱的赛博丹炉1.介绍2.解压配置3.使用训练准备首页设置上传素材查看进度 三、秋叶的lora训练器1.下载2.预处理3.参数调配 一、前言 其实想写LORA模型训练很久了&#xff0c;一直没时间&#xff0c;总结…...

蓝桥杯上岸每日N题 第八期 (全球变暖)!!!

蓝桥杯上岸每日N题第八期(全球变暖)&#xff01;&#xff01;&#xff01; 同步收录 &#x1f447; 蓝桥杯上岸必背&#xff01;&#xff01;&#xff01;(第五期BFS) 大家好 我是寸铁&#x1f4aa; 冲刺蓝桥杯省一模板大全来啦 &#x1f525; 蓝桥杯4月8号就要开始了 &am…...

CSS基础介绍笔记1

官方文档 CSS指的是层叠样式&#xff08;Cascading Style Sheets&#xff09;地址&#xff1a;CSS 教程离线文档&#xff1a;放大放小&#xff1a;ctrl鼠标滚动为什么需要css&#xff1a;简化修改HTML元素的样式&#xff1b;将html页面的内容与样式分离提高web开发的工作效率&…...

https请求异常引发(Received fatal alert: unrecognized_name):如何快速解决项目中问题?

总结思考&#xff1a;如何做一个出色的开发者&#xff1f; 首先我们要承认我们大部分程序员是应用开发&#xff0c;不是操作系统、协议、框架开发等这类底层开发者。 其一&#xff1a;是否能快速定位问题。如找到出现问题的代码&#xff0c;bug出现在哪一行&#xff0c;哪个应…...

小程序 view下拉滑动导致scrollview滑动事件失效

小程序页面需要滑动功能 下拉时滑动&#xff0c;展示整个会员卡内容&#xff0c; 下拉view里包含了最近播放&#xff1a;有scrollview&#xff0c;加了下拉功能后&#xff0c;scrollview滑动失败了。 <view class"cover-section" catchtouchstart"handletou…...

《ROS2》教程

参考资料&#xff1a; 古月居 B站视频&#xff1a; https://www.bilibili.com/video/BV16B4y1Q7jQ/?spm_id_from333.999.0.0 对应资料&#xff1a;https://book.guyuehome.com/ ROS之前最好有点ROS1的基础&#xff0c;跳转门&#xff1a;ROS-https://www.bilibili.com/video/B…...

抖音seo源码开发源代码搭建分享

抖音SEO源码开发涉及到以下几个方面&#xff1a; 前端开发&#xff1a;包括抖音SEO页面的设计与布局&#xff0c;以及需要使用到的前端技术&#xff0c;如HTML、CSS、JavaScript等。 后端开发&#xff1a;包括抖音SEO页面的数据获取和处理&#xff0c;以及需要使用到的后端技术…...

MATLAB——使用建立好的神经网络进行分类程序

学习目标&#xff1a;使用建立好的神经网络&#xff08;训练好并保存&#xff0c;下次直接调用该神经网络&#xff09;进行分类 clear all; close all; P[-0.4 -0.4 0.5 -0.2 -0.7;-0.6 0.6 -0.4 0.3 0.8]; %输入向量 T[1 1 0 0 1]; …...

Spring5.2.x 源码使用Gradle成功构建

一 前置准备 1 Spring5.2.x下载 1.1 Spring5.2.x Git下载地址 https://gitcode.net/mirrors/spring-projects/spring-framework.git 1.2 Spring5.2.x zip源码包下载&#xff0c;解压后倒入idea https://gitcode.net/mirrors/spring-projects/spring-framework/-/…...

iOS永久签名工具 - 轻松签使用教程

轻松签是一款IOS端免费的IPA签名和安装工具&#xff0c;最新版可以不用依赖证书对ipa永久签名&#xff0c;虽然现在用上了巨魔&#xff08;TrollStore&#xff09;- 是国外iOS开发人员opa334dev发布的一款工具&#xff0c;可以在不越狱的情况下&#xff0c;安装任何一款APP。 …...

如何申请中国境内提供金融信息服务业务许可

依据《外国机构在中国境内提供金融信息服务管理规定》《外国机构在中国境内提供金融信息服务申请许可说明》等政策&#xff0c;外国机构在中国境内提供金融信息服务业务许可要求如下&#xff1a; 金融信息服务定义 所称的外国机构&#xff0c;是指外国金融信息服务提供者。 …...

Java多线程(六)

目录 一、什么是线程安全问题 二、产生线程安全问题的原因 三、解决线程安全问题的方法 3.1 join()等待 3.2 synchronized加锁 3.3 wait()和notify() 3.4 volatile关键字 一、什么是线程安全问题 在操作系统中&#xff0c;线程的调度是随机的&#xff08;抢占式执行&#xff0…...

ceil(),floor(),round()函数C++详解

ceil&#xff08;&#xff09; ceil()函数是这样的&#xff1a; double ceil(double x) ceil函数可以把x上取整。 例子&#xff1a; #include <bits/stdc.h> using namespace std; int main() {double a, b;cin >> a >> b;printf("ceil(%.2f) %.2…...

自动化处理,web自动化测试处理多窗口+切换iframe框架页总结(超细整理)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 web 自动化之处理…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...