常见距离计算的Python实现
常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。
1.曼哈顿距离
也叫城市街区距离,是两点差向量的L1范数,也就是各元素的绝对值之和。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的曼哈顿距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ d=\sum_{i=1}^{n}{\left| x_i-y_i \right|} d=i=1∑n∣xi−yi∣
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sum(np.abs(A-B))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=1) #ord为范数类型,取值1(一范数),2(二范数),np.inf(无穷范数),默认2。# 方式三:scipy库计算
dist3 = distance.cityblock(A,B)
2.欧式距离
是一种最常见的距离,也就是两点差向量的L2范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的欧式距离表示为
d = ∑ i = 1 n ( x i − y i ) 2 d=\sqrt{\sum_{i=1}^{n}{\left( x_i-y_i \right)^{2}}} d=i=1∑n(xi−yi)2
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sqrt(np.sum((A-B)**2))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=2)# 方式三:scipy库计算
dist3 = distance.euclidean(A,B)
3.切比雪夫距离
最大的维度内距离,是两点差向量的无穷范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的切比雪夫距离表示为
d = m a x ( ∣ x i − y i ∣ ) d=max\left( \left| x_i-y_i \right| \right) d=max(∣xi−yi∣)
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.max(np.abs(A-B))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=np.inf)# 方式三:scipy库计算
dist3 = distance.chebyshev(A,B)
4. 闵可夫斯基距离
是一种范式距离的统称,可表示为两点差向量的Lp范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的闵可夫斯基距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ p p d=\sqrt[p]{\sum_{i=1}^{n}{\left| x_i-y_i \right|^{p}}} d=pi=1∑n∣xi−yi∣p
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:内置线性代数函数计算
dist1 = np.linalg.norm(A-B,ord=3) # np.linalg.norm(A-B,ord=p)# 方式二:scipy库计算
dist2 = distance.minkowski(A,B,3) # distance.minkowski(A,B,p)
5.汉明距离
衡量两个字符串之间的差异程度,对两个对象的向量元素逐个比较,差异的个数占总个数的比例。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的汉明距离表示为
d = 1 n ∑ i = 1 n I ( x i ≠ y i ) d=\frac{1}{n}\sum_{i=1}^{n}{I\left( x_i\ne y_i \right)} d=n1i=1∑nI(xi=yi)
其中I为指示函数,
I = { 1 i f ( x i ≠ y i ) 0 i f ( x i = y i ) \begin{equation} I= \left\{ \begin{array}{lr} 1 \quad if\left( x_i\ne y_i \right)&\\ 0 \quad if\left( x_i = y_i\right) \end{array} \right. \end{equation} I={1if(xi=yi)0if(xi=yi)
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:scipy库计算
dist1 = distance.hamming(A,B)
6.余弦距离
也叫余弦相似度,是两点空间向量夹角的余弦值,是内积与模积的比值,用来衡量两向量间的差异程度。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的余弦距离表示为
d = c o s θ = < A , B > ∣ A ∣ ⋅ ∣ B ∣ = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 ⋅ ∑ i = 1 n y i 2 \begin{align} d&=cos\theta=\frac{<A,B>}{\left| A \right|\cdot\left| B \right|} \\ &=\frac{\sum_{i=1}^{n}{x_iy_i}}{\sqrt{\sum_{i=1}^{n}{x_i^{2}}}\cdot\sqrt{\sum_{i=1}^{n}{y_i^{2}}}} \end{align} d=cosθ=∣A∣⋅∣B∣<A,B>=∑i=1nxi2⋅∑i=1nyi2∑i=1nxiyi
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sum(A*B)/(np.sqrt(np.sum(A**2))*np.sqrt(np.sum(B**2)))# 方式二:scipy库计算
dist2 = 1-distance.cosine(A,B)
End.
参考:
https://blog.csdn.net/lemonbit/article/details/129053257
相关文章:
常见距离计算的Python实现
常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。 1.曼哈顿距离 也叫城市…...
开发运营监控
DevOps 监控使管理员能够实时了解生产环境中的元素,并有助于确保应用程序平稳运行,同时提供最高的业务价值,对于采用 DevOps 文化和方法的公司来说,这一点至关重要。 什么是开发运营监控 DevOps 通过持续开发、集成、测试、监控…...
食品小程序的制作教程
在今天的互联网时代,小程序已经成为了各行业推广和销售的重要途径。特别是对于食品行业来说,拥有一个专属的小程序商城可以带来更多的用户和销售机会。那么,如何制作一个完美的食品小程序呢?下面就跟随我来一步步教你,…...
Kubernetes(K8s)从入门到精通系列之十三:软件负载平衡选项
Kubernetes K8s从入门到精通系列之十三:软件负载平衡选项 一、软件负载平衡选项二、keepalived and haproxy三、keepalived配置四、haproxy配置五、选项 1:在操作系统上运行服务六、选项 2:将服务作为静态 Pod 运行 一、软件负载平衡选项 当…...
数据特征选择 | Matlab实现具有深度度量学习的时频特征嵌入
文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 数据特征选择 | Matlab实现具有深度度量学习的时频特征嵌入。 深度度量学习尝试学习非线性特征嵌入或编码器,它可以减少来自同一类的示例之间的距离(度量)并增加来自不同类的示例之间的距离。 以这种方式工作的…...
浅谈webpack
文章目录 Webpackwebpack的工作原理webpack的构建流程Webpack的基本功能有哪些Webpack常用配置 Webpack Webpack是一个现代的JavaScript应用程序静态模块打包工具。它是一个用于构建和打包前端资源的工具,可以将多个模块和资源(如JavaScript、CSS、图片…...
【 stable diffusion LORA模型训练最全最详细教程】
个人网站:https://tianfeng.space/ 文章目录 一、前言二、朱尼酱的赛博丹炉1.介绍2.解压配置3.使用训练准备首页设置上传素材查看进度 三、秋叶的lora训练器1.下载2.预处理3.参数调配 一、前言 其实想写LORA模型训练很久了,一直没时间,总结…...
蓝桥杯上岸每日N题 第八期 (全球变暖)!!!
蓝桥杯上岸每日N题第八期(全球变暖)!!! 同步收录 👇 蓝桥杯上岸必背!!!(第五期BFS) 大家好 我是寸铁💪 冲刺蓝桥杯省一模板大全来啦 🔥 蓝桥杯4月8号就要开始了 &am…...
CSS基础介绍笔记1
官方文档 CSS指的是层叠样式(Cascading Style Sheets)地址:CSS 教程离线文档:放大放小:ctrl鼠标滚动为什么需要css:简化修改HTML元素的样式;将html页面的内容与样式分离提高web开发的工作效率&…...
https请求异常引发(Received fatal alert: unrecognized_name):如何快速解决项目中问题?
总结思考:如何做一个出色的开发者? 首先我们要承认我们大部分程序员是应用开发,不是操作系统、协议、框架开发等这类底层开发者。 其一:是否能快速定位问题。如找到出现问题的代码,bug出现在哪一行,哪个应…...
小程序 view下拉滑动导致scrollview滑动事件失效
小程序页面需要滑动功能 下拉时滑动,展示整个会员卡内容, 下拉view里包含了最近播放:有scrollview,加了下拉功能后,scrollview滑动失败了。 <view class"cover-section" catchtouchstart"handletou…...
《ROS2》教程
参考资料: 古月居 B站视频: https://www.bilibili.com/video/BV16B4y1Q7jQ/?spm_id_from333.999.0.0 对应资料:https://book.guyuehome.com/ ROS之前最好有点ROS1的基础,跳转门:ROS-https://www.bilibili.com/video/B…...
抖音seo源码开发源代码搭建分享
抖音SEO源码开发涉及到以下几个方面: 前端开发:包括抖音SEO页面的设计与布局,以及需要使用到的前端技术,如HTML、CSS、JavaScript等。 后端开发:包括抖音SEO页面的数据获取和处理,以及需要使用到的后端技术…...
MATLAB——使用建立好的神经网络进行分类程序
学习目标:使用建立好的神经网络(训练好并保存,下次直接调用该神经网络)进行分类 clear all; close all; P[-0.4 -0.4 0.5 -0.2 -0.7;-0.6 0.6 -0.4 0.3 0.8]; %输入向量 T[1 1 0 0 1]; …...
Spring5.2.x 源码使用Gradle成功构建
一 前置准备 1 Spring5.2.x下载 1.1 Spring5.2.x Git下载地址 https://gitcode.net/mirrors/spring-projects/spring-framework.git 1.2 Spring5.2.x zip源码包下载,解压后倒入idea https://gitcode.net/mirrors/spring-projects/spring-framework/-/…...
iOS永久签名工具 - 轻松签使用教程
轻松签是一款IOS端免费的IPA签名和安装工具,最新版可以不用依赖证书对ipa永久签名,虽然现在用上了巨魔(TrollStore)- 是国外iOS开发人员opa334dev发布的一款工具,可以在不越狱的情况下,安装任何一款APP。 …...
如何申请中国境内提供金融信息服务业务许可
依据《外国机构在中国境内提供金融信息服务管理规定》《外国机构在中国境内提供金融信息服务申请许可说明》等政策,外国机构在中国境内提供金融信息服务业务许可要求如下: 金融信息服务定义 所称的外国机构,是指外国金融信息服务提供者。 …...
Java多线程(六)
目录 一、什么是线程安全问题 二、产生线程安全问题的原因 三、解决线程安全问题的方法 3.1 join()等待 3.2 synchronized加锁 3.3 wait()和notify() 3.4 volatile关键字 一、什么是线程安全问题 在操作系统中,线程的调度是随机的(抢占式执行࿰…...
ceil(),floor(),round()函数C++详解
ceil() ceil()函数是这样的: double ceil(double x) ceil函数可以把x上取整。 例子: #include <bits/stdc.h> using namespace std; int main() {double a, b;cin >> a >> b;printf("ceil(%.2f) %.2…...
自动化处理,web自动化测试处理多窗口+切换iframe框架页总结(超细整理)
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 web 自动化之处理…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
