常见距离计算的Python实现
常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。
1.曼哈顿距离
也叫城市街区距离,是两点差向量的L1范数,也就是各元素的绝对值之和。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的曼哈顿距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ d=\sum_{i=1}^{n}{\left| x_i-y_i \right|} d=i=1∑n∣xi−yi∣
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sum(np.abs(A-B))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=1) #ord为范数类型,取值1(一范数),2(二范数),np.inf(无穷范数),默认2。# 方式三:scipy库计算
dist3 = distance.cityblock(A,B)
2.欧式距离
是一种最常见的距离,也就是两点差向量的L2范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的欧式距离表示为
d = ∑ i = 1 n ( x i − y i ) 2 d=\sqrt{\sum_{i=1}^{n}{\left( x_i-y_i \right)^{2}}} d=i=1∑n(xi−yi)2
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sqrt(np.sum((A-B)**2))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=2)# 方式三:scipy库计算
dist3 = distance.euclidean(A,B)
3.切比雪夫距离
最大的维度内距离,是两点差向量的无穷范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的切比雪夫距离表示为
d = m a x ( ∣ x i − y i ∣ ) d=max\left( \left| x_i-y_i \right| \right) d=max(∣xi−yi∣)
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.max(np.abs(A-B))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=np.inf)# 方式三:scipy库计算
dist3 = distance.chebyshev(A,B)
4. 闵可夫斯基距离
是一种范式距离的统称,可表示为两点差向量的Lp范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的闵可夫斯基距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ p p d=\sqrt[p]{\sum_{i=1}^{n}{\left| x_i-y_i \right|^{p}}} d=pi=1∑n∣xi−yi∣p
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:内置线性代数函数计算
dist1 = np.linalg.norm(A-B,ord=3) # np.linalg.norm(A-B,ord=p)# 方式二:scipy库计算
dist2 = distance.minkowski(A,B,3) # distance.minkowski(A,B,p)
5.汉明距离
衡量两个字符串之间的差异程度,对两个对象的向量元素逐个比较,差异的个数占总个数的比例。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的汉明距离表示为
d = 1 n ∑ i = 1 n I ( x i ≠ y i ) d=\frac{1}{n}\sum_{i=1}^{n}{I\left( x_i\ne y_i \right)} d=n1i=1∑nI(xi=yi)
其中I为指示函数,
I = { 1 i f ( x i ≠ y i ) 0 i f ( x i = y i ) \begin{equation} I= \left\{ \begin{array}{lr} 1 \quad if\left( x_i\ne y_i \right)&\\ 0 \quad if\left( x_i = y_i\right) \end{array} \right. \end{equation} I={1if(xi=yi)0if(xi=yi)
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:scipy库计算
dist1 = distance.hamming(A,B)
6.余弦距离
也叫余弦相似度,是两点空间向量夹角的余弦值,是内积与模积的比值,用来衡量两向量间的差异程度。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的余弦距离表示为
d = c o s θ = < A , B > ∣ A ∣ ⋅ ∣ B ∣ = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 ⋅ ∑ i = 1 n y i 2 \begin{align} d&=cos\theta=\frac{<A,B>}{\left| A \right|\cdot\left| B \right|} \\ &=\frac{\sum_{i=1}^{n}{x_iy_i}}{\sqrt{\sum_{i=1}^{n}{x_i^{2}}}\cdot\sqrt{\sum_{i=1}^{n}{y_i^{2}}}} \end{align} d=cosθ=∣A∣⋅∣B∣<A,B>=∑i=1nxi2⋅∑i=1nyi2∑i=1nxiyi
Python实现:
import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sum(A*B)/(np.sqrt(np.sum(A**2))*np.sqrt(np.sum(B**2)))# 方式二:scipy库计算
dist2 = 1-distance.cosine(A,B)
End.
参考:
https://blog.csdn.net/lemonbit/article/details/129053257
相关文章:

常见距离计算的Python实现
常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。 1.曼哈顿距离 也叫城市…...

开发运营监控
DevOps 监控使管理员能够实时了解生产环境中的元素,并有助于确保应用程序平稳运行,同时提供最高的业务价值,对于采用 DevOps 文化和方法的公司来说,这一点至关重要。 什么是开发运营监控 DevOps 通过持续开发、集成、测试、监控…...

食品小程序的制作教程
在今天的互联网时代,小程序已经成为了各行业推广和销售的重要途径。特别是对于食品行业来说,拥有一个专属的小程序商城可以带来更多的用户和销售机会。那么,如何制作一个完美的食品小程序呢?下面就跟随我来一步步教你,…...

Kubernetes(K8s)从入门到精通系列之十三:软件负载平衡选项
Kubernetes K8s从入门到精通系列之十三:软件负载平衡选项 一、软件负载平衡选项二、keepalived and haproxy三、keepalived配置四、haproxy配置五、选项 1:在操作系统上运行服务六、选项 2:将服务作为静态 Pod 运行 一、软件负载平衡选项 当…...

数据特征选择 | Matlab实现具有深度度量学习的时频特征嵌入
文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 数据特征选择 | Matlab实现具有深度度量学习的时频特征嵌入。 深度度量学习尝试学习非线性特征嵌入或编码器,它可以减少来自同一类的示例之间的距离(度量)并增加来自不同类的示例之间的距离。 以这种方式工作的…...

浅谈webpack
文章目录 Webpackwebpack的工作原理webpack的构建流程Webpack的基本功能有哪些Webpack常用配置 Webpack Webpack是一个现代的JavaScript应用程序静态模块打包工具。它是一个用于构建和打包前端资源的工具,可以将多个模块和资源(如JavaScript、CSS、图片…...

【 stable diffusion LORA模型训练最全最详细教程】
个人网站:https://tianfeng.space/ 文章目录 一、前言二、朱尼酱的赛博丹炉1.介绍2.解压配置3.使用训练准备首页设置上传素材查看进度 三、秋叶的lora训练器1.下载2.预处理3.参数调配 一、前言 其实想写LORA模型训练很久了,一直没时间,总结…...

蓝桥杯上岸每日N题 第八期 (全球变暖)!!!
蓝桥杯上岸每日N题第八期(全球变暖)!!! 同步收录 👇 蓝桥杯上岸必背!!!(第五期BFS) 大家好 我是寸铁💪 冲刺蓝桥杯省一模板大全来啦 🔥 蓝桥杯4月8号就要开始了 &am…...

CSS基础介绍笔记1
官方文档 CSS指的是层叠样式(Cascading Style Sheets)地址:CSS 教程离线文档:放大放小:ctrl鼠标滚动为什么需要css:简化修改HTML元素的样式;将html页面的内容与样式分离提高web开发的工作效率&…...

https请求异常引发(Received fatal alert: unrecognized_name):如何快速解决项目中问题?
总结思考:如何做一个出色的开发者? 首先我们要承认我们大部分程序员是应用开发,不是操作系统、协议、框架开发等这类底层开发者。 其一:是否能快速定位问题。如找到出现问题的代码,bug出现在哪一行,哪个应…...

小程序 view下拉滑动导致scrollview滑动事件失效
小程序页面需要滑动功能 下拉时滑动,展示整个会员卡内容, 下拉view里包含了最近播放:有scrollview,加了下拉功能后,scrollview滑动失败了。 <view class"cover-section" catchtouchstart"handletou…...

《ROS2》教程
参考资料: 古月居 B站视频: https://www.bilibili.com/video/BV16B4y1Q7jQ/?spm_id_from333.999.0.0 对应资料:https://book.guyuehome.com/ ROS之前最好有点ROS1的基础,跳转门:ROS-https://www.bilibili.com/video/B…...

抖音seo源码开发源代码搭建分享
抖音SEO源码开发涉及到以下几个方面: 前端开发:包括抖音SEO页面的设计与布局,以及需要使用到的前端技术,如HTML、CSS、JavaScript等。 后端开发:包括抖音SEO页面的数据获取和处理,以及需要使用到的后端技术…...

MATLAB——使用建立好的神经网络进行分类程序
学习目标:使用建立好的神经网络(训练好并保存,下次直接调用该神经网络)进行分类 clear all; close all; P[-0.4 -0.4 0.5 -0.2 -0.7;-0.6 0.6 -0.4 0.3 0.8]; %输入向量 T[1 1 0 0 1]; …...

Spring5.2.x 源码使用Gradle成功构建
一 前置准备 1 Spring5.2.x下载 1.1 Spring5.2.x Git下载地址 https://gitcode.net/mirrors/spring-projects/spring-framework.git 1.2 Spring5.2.x zip源码包下载,解压后倒入idea https://gitcode.net/mirrors/spring-projects/spring-framework/-/…...

iOS永久签名工具 - 轻松签使用教程
轻松签是一款IOS端免费的IPA签名和安装工具,最新版可以不用依赖证书对ipa永久签名,虽然现在用上了巨魔(TrollStore)- 是国外iOS开发人员opa334dev发布的一款工具,可以在不越狱的情况下,安装任何一款APP。 …...

如何申请中国境内提供金融信息服务业务许可
依据《外国机构在中国境内提供金融信息服务管理规定》《外国机构在中国境内提供金融信息服务申请许可说明》等政策,外国机构在中国境内提供金融信息服务业务许可要求如下: 金融信息服务定义 所称的外国机构,是指外国金融信息服务提供者。 …...

Java多线程(六)
目录 一、什么是线程安全问题 二、产生线程安全问题的原因 三、解决线程安全问题的方法 3.1 join()等待 3.2 synchronized加锁 3.3 wait()和notify() 3.4 volatile关键字 一、什么是线程安全问题 在操作系统中,线程的调度是随机的(抢占式执行࿰…...

ceil(),floor(),round()函数C++详解
ceil() ceil()函数是这样的: double ceil(double x) ceil函数可以把x上取整。 例子: #include <bits/stdc.h> using namespace std; int main() {double a, b;cin >> a >> b;printf("ceil(%.2f) %.2…...

自动化处理,web自动化测试处理多窗口+切换iframe框架页总结(超细整理)
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 web 自动化之处理…...

企业服务器数据库中了devos勒索病毒怎么办如何解决预防勒索病毒攻击
随着科学技术的不断发展,计算机可以帮助我们完成很多重要的工作,但是随之而来的网络威胁也不断提升。近期,我们收到很多企业的求助,企业的服务器数据库遭到了devos勒索病毒攻击,导致系统内部的许多重要数据被加密无法正…...

three.js学习
三大组建:场景(scene),相机(camera),渲染器(renderer) 创建三要素代码: var scene new THREE.Scene(); // 场景 var camera new THREE.PerspectiveCamera(75, window.innerWidth/window.innerHeight, 0.1, 1000); // 透明相机 var renderer new THR…...

Vue3 第一节 Vue3简介以及创建Vue3工程
1.Vue3简介以及Vue3带来了什么 2.创建Vue3.0工程并分析Vue3工程结构 3.setup函数 4.ref函数 5.reactive函数 一.Vue3简介以及Vue3带来了什么 ① Vue3简介 2020年9月18日,Vue.js发布3.0版本,代号:One Piece(海贼王࿰…...

用docker 部署springboot项目
# 加入java FROM bitnami/java # WORKDIR /usr/local/test/boot-work#镜像内的工作目录 WORKDIR /usr/local/test# ENV workPath /usr/local/test/boot-work# 宿主的当前目录 boot-v1.jarjar 拷贝到 WORKDIR下boot.jar ADD boot-v1.jar boot.jar # 暴露80端口 EXPOSE 80 # 启动…...

maven 模块打包时包含依赖和打包可执行的jar
maven 模块打包 1)maven 模块打包jar文件时,指定包含依赖(with-dependencies); 2)maven 模块打包jar文件时,指定入口MainClass、打包生成可执行的jar; vi qftools/common/src/main…...

perl脚本调用openssh不能正确执行(ctl_dir /root/.libnet-openssh-perl/ is not secure)的原因排查
在使用perl脚本的时候,通过Net::OpenSSH去获取执行节点的信息是一种常用的方法。在某个环境中,执行命令的时候出错,下面展示一下相关的代码 my $ssh_ops {user > "root", password > "password", master_opts >…...

Apache+Tomcat 整合
目录 方式一:JK 1、下载安装包 2、添加依赖 3、启动服务,检查端口是否监听 4、提供apxs命令 5、检查是否确实依赖 6、编译安装 7、重要配置文件 方式二:http_proxy 方式三:ajp_proxy 方式一:JK 1、下载安装…...

CSS中page-break-after属性
在CSS中,page-break-after是一个属性,它控制了元素后的分页行为。 当你打印一个网页的时候,page-break-after属性可以设置在元素后插入一个分页符,将内容分割到新的一页上。它的值可以是以下之一: auto: …...

mvn build jar依赖和源码本身分开。减轻编译后的jar大小
问题场景:平时在springboot项目中,打jar包都是默认把开发的代码和依赖jar包都打到一个jar包里,导致每次打包费时而且jar包还很大,升级一下都要把一个很大的包拷来拷去。如果是修改问题需要频繁替换jar包,那简直要疯 解…...

Java是值传递还是引用传递?
值传递和引用传递最大的区别是传递的过程中有没有复制出一个副本来,如果是传递副本,那就是值传递,否则就是引用传递。 Java对象的传递,是通过复制的方式把引用关系传递了,因为有复制的过程,所以是值传递&a…...