Python实现GA遗传算法优化LightGBM回归模型(LGBMRegressor算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


1.项目背景
遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。在求解较为复杂的组合优化问题时,相对一些常规的优化算法,通常能够较快地获得较好的优化结果。遗传算法已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
本项目通过GA遗传算法优化LightGBM回归模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:

关键代码:
3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有9个变量,数据中无缺失值,共1000条数据。
关键代码:
3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-300~300之间。
4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:

5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建GA遗传算法优化LightGBM回归模型
主要使用GA遗传算法优化LightGBM回归算法,用于目标回归。
6.1 GA遗传算法寻找最优参数值
最优参数值:
6.2 最优参数值构建模型

7.模型评估
7.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

从上表可以看出,R方0.9541,为模型效果良好。
关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
8.结论与展望
综上所述,本文采用了GA遗传算法寻找LightGBM算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 初始化种群、初始解
Sol = np.zeros((N_pop, d)) # 初始化位置
Fitness = np.zeros((N_pop, 1)) # 初始化适用度
for i in range(N_pop): # 迭代种群Sol[i] = np.random.uniform(Lower_bound, Upper_bound, (1, d)) # 生成随机数Fitness[i] = objfun(Sol[i]) # 适用度# ******************************************************************************# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ# 提取码:thgk# ******************************************************************************# y变量分布直方图
fig = plt.figure(figsize=(8, 5)) # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df['y'] # 过滤出y变量的样本
# 绘制直方图 bins:控制直方图中的区间个数 auto为自动填充个数 color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
项目代码咨询、获取,请见下方公众号。
相关文章:
Python实现GA遗传算法优化LightGBM回归模型(LGBMRegressor算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世…...
【基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型】
逻辑回归进行鸢尾花分类的案例 背景说明: 基于IDEA Spark 3.4.1 sbt 1.9.3 Spark MLlib 构建逻辑回归鸢尾花分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。 依赖 ThisBui…...
资深测试老鸟整理,性能测试-常见调优详细,卷起来...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 常见的一些性能缺…...
【第五章 flutter学习之flutter进阶组件-上篇】
文章目录 一、列表组件1.常规列表2.动态列表 二、FridView组件三、Stack层叠组件四、AspectRatio Card CircleAvatar组件五、按钮组件六、Stack组件七、Wrap组件八、StatefulWidget有状态组件总结 一、列表组件 1.常规列表 children: const <Widget>[ListTile(leading: …...
鸿蒙边缘计算网关正式开售
IDO-IPC3528鸿蒙边缘计算网关基于RK3568研发设计,采用22nm先进工艺制程,四核A55 CPU,主频高达2.0GHz,支持高达8GB高速LPDDR4,1T算力NPU,4K H.265/H264硬解码;视频输出接口HDMI2.0,双…...
Bytebase 2.5.0 - VCS 集成支持 Azure DevOps,支持达梦数据库
🚀 新功能 VCS 集成支持 Azure DevOps。研发版本支持达梦数据库。允许用户设置需要重新登录的频率。支持选择并导出数据库变更历史。新增 MySQL Schema 设计器。支持字段模板库。 🎄 改进 在 SQL 编辑器中,优化 MongoDB 的查询结果。优化 …...
tomcat通过systemctl启动时报错Cannot find /usr/local/tomcat/bin/setclasspath.sh
解决方法,检查自己的CATALINA_HOME和TOMCAT_HOME配置情况 我的配置在/etc/profile下的如下 使其立即生效 后将/usr/lib/systemd/system/tomcat.service中的CATALINA_HOME和TOMCAT_HOME和/etc/profile改一致 重新加载再重启解决 解决方法,检查自己的C…...
Django架构图
1. Django 简介 基本介绍 Django 是一个由 Python 编写的一个开放源代码的 Web 应用框架 使用 Django,只要很少的代码,Python 的程序开发人员就可以轻松地完成一个正式网站所需要的大部分内容,并进一步开发出全功能的 Web 服务 Django 本身…...
vue- 创建wms-web项目
vue 发展历程 安装vite 第一步 创建wms-web项目 第二步 打开文件夹并安装所有开发环境的依赖 都可以放静态资源 public>vite.svg 不会重新编译成其他名字 assets>vue.svg 会重新编译成一个随机的名称 重新编译 启动 第三步 spa 单页渲染 第四步 安装路由 第五步 …...
集成学习:机器学习模型如何“博采众长”
前置概念 偏差 指模型的预测值与真实值之间的差异,它反映了模型的拟合能力。 方差 指模型在不同的训练集上产生的预测结果的差异,它反映了模型的稳定性。 方差和偏差对预测结果所造成的影响 在机器学习中,我们通常希望模型的偏差和方差都…...
排序算法(二)
1.希尔排序-Shell Sort 1.算法原理 将未排序序列按照增量gap的不同分割为若干个子序列,然后分别进行插入排序,得到若干组排好序的序列; 缩小增量gap,并对分割为的子序列进行插入排序;最后一次的gap1,即整个…...
CVPR 2023 | 无监督深度概率方法在部分点云配准中的应用
注1:本文系“计算机视觉/三维重建论文速递”系列之一,致力于简洁清晰完整地介绍、解读计算机视觉,特别是三维重建领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, NeurIPS, ICLR, ICML, TPAMI, IJCV 等)。本次介绍的论文是:2023年,CVPR,…...
HTTP隧道识别与防御:机器学习的解决方案
随着互联网的快速发展,HTTP代理爬虫已成为数据采集的重要工具。然而,随之而来的是恶意爬虫对网络安全和数据隐私的威胁。为了更好地保护网络环境和用户数据,我们进行了基于机器学习的HTTP代理爬虫识别与防御的研究。以增强对HTTP代理爬虫的识…...
【MMU】认识 MMU 及内存映射的流程
MMU(Memory Manager Unit),是内存管理单元,负责将虚拟地址转换成物理地址。除此之外,MMU 实现了内存保护,进程无法直接访问物理内存,防止内存数据被随意篡改。 目录 一、内存管理体系结构 1、…...
Clion开发Stm32之存储模块(W25Q64)驱动编写
前言 涵盖之前文章: Clion开发STM32之HAL库SPI封装(基础库) W25Q64驱动 头文件 #ifndef F1XX_TEMPLATE_MODULE_W25Q64_H #define F1XX_TEMPLATE_MODULE_W25Q64_H#include "sys_core.h" /* Private typedef ---------------------------------------------------…...
SpringBoot动态切换数据源
SpringBoot整合多数据源,动态添加新数据源并切换 1.需求2.创建数据源配置类3.切换数据源4.切换数据源管理类5.使用案例5.AOP切面拦截 1.需求 低代码服务需要给多套系统进行功能配置,要求表结构必须生成在对应系统的数据库中,所以表结构的生成…...
[C++项目] Boost文档 站内搜索引擎(4): 搜索的相关接口的实现、线程安全的单例index接口、cppjieba分词库的使用、综合调试...
有关Boost文档搜索引擎的项目的前三篇文章, 已经分别介绍分析了: 项目背景: 🫦[C项目] Boost文档 站内搜索引擎(1): 项目背景介绍、相关技术栈、相关概念介绍…文档解析、处理模块parser的实现: 🫦[C项目] Boost文档 站内搜索引擎(2): 文档文本解析模块…...
SAP ABAP元素域值描述通过函数(DD_DOMVALUE_TEXT_GET)获取
代码如下: PERFORM FRM_GET_DOMVALUE_TEXT USING ZMMD_ZFLZQ <GFS_DATA>-ZFLZQ CHANGING <GFS_DATA>-ZZQTEXT .IF <GFS_DATA>-ZXYLX IS NOT INITIAL .PERFORM FRM_GET_DOMVALUE_TEXT USING ZMMD_ZXYLX <GFS_DATA>-ZXYLX CHANGING <GFS_…...
原型模式与享元模式:提升系统性能的利器
原型模式和享元模式,前者是在创建多个实例时,对创建过程的性能进行调优;后者是用减 少创建实例的方式,来调优系统性能。这么看,你会不会觉得两个模式有点相互矛盾呢? 在有些场景下,我们需要重复…...
uniapp封装手写签名
组件代码 cat-signature <template><view v-if"visibleSync" class"cat-signature" :class"{visible:show}" touchmove.stop.prevent"moveHandle"><view class"mask" tap"close" /><view c…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
数据库——redis
一、Redis 介绍 1. 概述 Redis(Remote Dictionary Server)是一个开源的、高性能的内存键值数据库系统,具有以下核心特点: 内存存储架构:数据主要存储在内存中,提供微秒级的读写响应 多数据结构支持&…...
数据分析六部曲?
引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...
