当前位置: 首页 > news >正文

卡尔曼滤波算法demo

在这里插入图片描述

代码

learn_kalman.py

#coding=utf-8
import numpy as np
import time
from kinematic_model import freedrop
from controller import kalman_filterimport matplotlib.pyplot as plt
#   支持中文
import matplotlib as mpl
mpl.rcParams['font.family']='SimHei'
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号class Scene:'''场景'''def __init__(self,windSpd=np.array([0.7,0.3,0.0]),\initialSpd=np.array([120.0,0.0,120.0])):'''我现在是一个防空兵防空炮打出一枚炮弹,真实的炮弹轨迹,它可能会受风的影响,可能会有随机因素导致偏离目标导致打不中飞机...我们可以使用指挥所观测到的炮弹轨迹,因为炮弹距离很远,所以这个观测不是很靠谱...所以我们所使用了卡尔曼滤波算法,得到了一条真实的炮弹轨迹...'''#   真实的炮弹self.realShell=freedrop.FreeDropBinder(windSpd=windSpd,initialSpd=initialSpd)#   理论上炮弹的落点self.theoShell=freedrop.FreeDropBinder(windSpd=np.array([0.0,0.0,0.0]),initialSpd=initialSpd,randRatio=0.0)#   卡卡尔曼滤波器self.kf=kalman_filter.KF_Onmi3D()self.kf.initState[3:6]=initialSpd#   绘图区self.fig=plt.figure('炮弹弹道图')self.ax = self.fig.gca(projection="3d")#   数据缓存self.realCoord=[]self.theoCoord=[]self.kalmanCoord=[]self.observeCoord=[]def UpdateData(self,delta_t=0.2):'''更新虚拟环境的数据:return:'''#   真实炮弹轨迹self.realShell.StateUpdate(delta_t=delta_t)#   理论炮弹轨迹self.theoShell.StateUpdate(delta_t=delta_t)#   观测到的炮弹轨迹self.observeCoord.append(self.realShell.position + np.random.random(3) * self.realShell.position[0]/20.0 - self.realShell.position[0]/40.0)#   卡尔曼滤波'''基于卡尔曼滤波,结合理论炮弹轨迹 对观测的炮弹轨迹进行修正'''self.kf.Predict(velocity=self.theoShell.spd)Hybrid_Position=self.kf.Update(self.observeCoord[-1])#   绘图(真实的弹道)plt.cla()self.ax.set_xlim(0, 1000)self.ax.set_ylim(-200, 200)self.ax.set_zlim(0, 300)self.ax.set_xlabel("X坐标(米)")self.ax.set_ylabel("Y坐标(米)")self.ax.set_zlabel("X坐标(米)")#   计算三个类型的炮弹self.realCoord.append(np.copy(self.realShell.position))     #   真实炮弹self.theoCoord.append(np.copy(self.theoShell.position))     #   理论模型self.kalmanCoord.append(np.copy(Hybrid_Position))self.curve2Draw=np.array(self.realCoord)self.curve2 = np.array(self.observeCoord)self.curve3 = np.array(self.theoCoord)self.curve4 = np.array(self.kalmanCoord)self.ax.plot(self.curve2Draw[:,0],self.curve2Draw[:,1],self.curve2Draw[:,2],label='真实炮弹',color='red')self.ax.scatter(self.curve2[:, 0], self.curve2[:, 1], self.curve2[:, 2],'rv+', label='炮弹观测数据', color='blue',alpha=0.5,s=1)self.ax.plot(self.curve3[:, 0], self.curve3[:, 1], self.curve3[:, 2], label='炮弹理论轨迹', color='green', alpha=0.5)self.ax.plot(self.curve4[:, 0], self.curve4[:, 1], self.curve4[:, 2], label='炮弹融合轨迹', color='yellow', alpha=1.0)self.ax.legend()plt.pause(0.05)#   开始模拟环境
#plt.ion()s=Scene()for i in range(1000):if s.realShell.position[2]<0: breaks.UpdateData()
plt.ioff()
plt.show()

freerop.py

#coding=utf-8
import timeimport numpy as np
'''3D自由落体模型(含有风阻)
'''class FreeDropBinder:'''为实体绑定自由落体属性'''def __init__(self,windSpd=np.array([0.0,0.0,0.0]),resRatio=0.0004,G=9.8,initialPos=np.array([0.0,0.0,0.0]),initialSpd=np.array([0.0,0.0,0.0]),randRatio=0.1):''':param windSpd:  风速(三维):param resRatio: 风阻比例(全向):param G: 重力加速度:param initialPos:  物体初始位置:param initialSpd:  物体初始速度'''self.position=initialPosself.spd=initialSpdself.windSpd=windSpdself.resRatio=resRatioself.G=Gself.randRatio=randRatiodef StateUpdate(self,delta_t=0.05,driveForce=np.array([0.0,0.0,0.0])):'''更新实体位置信息:param delta_t::return:'''#   重力因素self.spd+=np.array([0,0,-self.G*delta_t])#   风阻因素self.spd=np.where(self.spd>0,self.spd-self.resRatio*self.spd*self.spd,self.spd)self.spd = np.where(self.spd <= 0, self.spd + self.resRatio * self.spd * self.spd, self.spd)#   风力因素#   驱动因素self.spd+=(driveForce+self.windSpd)*delta_t#   随机因素self.spd+=(np.random.rand(3)-0.5)*2*self.randRatio*delta_t#   更新坐标self.position=self.position+self.spd*delta_tif __name__=='__main__':box=FreeDropBinder(initialSpd=np.array([10.0,0.0,100.0]))for i in range(30):print(box.Update())

kalman_filter.py

import numpy as np
import matplotlib.pyplot as pltclass KF_Onmi3D:'''三维,无方向场景下的卡尔曼滤波算法模组'''def __init__(self):# 初始状态                 x  y  z vx vy vzself.initState=np.array([0, 0, 0, 0, 0, 0],dtype=np.float)# 初始协方差,可以看出是每个维度都是一一对应的关系'''[ 1 0 0 0 0 0 ][ 0 1 0 0 0 0 ][ 0 0 1 0 0 0 ][ 0 0 0 1 0 0 ][ 0 0 0 0 1 0 ][ 0 0 0 0 0 1 ]'''self.initCov=np.eye(6)#   状态转移矩阵self.stateTransMatrix=np.array([[1,0,0,1,0,0],[0,1,0,0,1,0],[0,0,1,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]],dtype=np.float)#   观测矩阵                    X  Y  Z  Vx Vy Vzself.observeMatrix=np.array([[1, 0, 0, 0, 0, 0],[0, 1, 0, 0, 0, 0],[0, 0, 1, 0, 0, 0]],dtype=np.float)#   过程噪声(先设定一个初始值,这个需要跟据你系统的评估来确定)self.procNoise=np.eye(6)*0.001#   观测噪声的协方差矩阵self.observeNoiseCov=np.eye(3)*1self.InitParams()def InitParams(self):'''初始化状态变量:return:'''self.currentState=self.initState.copy()self.predictState=self.initState.copy()self.currentCov=self.initCovself.predictedCov=self.currentCovdef Predict(self,velocity=np.array([0,0,0],dtype=np.float)):'''预测过程:param v::return:'''#   基于当前的速度,预测机器人下一个状态的状态数值self.predictState=self.stateTransMatrix.dot(self.currentState)#   预测三维环境下的协方差矩阵self.predictedCov=self.stateTransMatrix.dot(self.currentCov).dot(self.stateTransMatrix.T)+self.procNoise#   把速度赋值给状态中的“速度”属性self.currentState[3:6] = velocitydef Update(self,observed_Pos=np.array([0,0,0],dtype=np.float)):'''更新数据:param observed_Pos: 带有误差的位置观测值:return:'''#   卡尔曼增益(Kalman Gain)计算'''K=\frac{估计的误差}{估计的误差+测量的误差}=\frac{\hat{P_k}C}{C\hat{P_k}C^T+Error}'''self.Kalman_Gain = self.predictedCov.dot(self.observeMatrix.T) \.dot(np.linalg.inv( \self.observeMatrix.dot(self.predictedCov).dot(self.observeMatrix.T) + self.observeNoiseCov))'''基于Kalman Gain估算当前状态'''self.currentState = self.predictState + self.Kalman_Gain.dot(observed_Pos-self.observeMatrix.dot(self.predictState))'''当前协方差估计'''self.currentCov = (np.eye(6) - self.Kalman_Gain.dot(self.observeMatrix)).dot(self.predictedCov)return self.currentState[0:3]

参考

https://www.bilibili.com/video/BV1gF411f78t/?spm_id_from=333.337.top_right_bar_window_history.content.click&vd_source=667c3d14dbb51ec849c0bc7c38329d10

相关文章:

卡尔曼滤波算法demo

代码 learn_kalman.py #codingutf-8 import numpy as np import time from kinematic_model import freedrop from controller import kalman_filterimport matplotlib.pyplot as plt # 支持中文 import matplotlib as mpl mpl.rcParams[font.family]SimHei plt.rcParams[a…...

MySQL游标(二十九)

二八佳人体似酥&#xff0c;腰悬利剑斩愚夫&#xff0c;虽然不见人头落,暗里教君骨髓枯。 上一章简单介绍了MySQL流程控制(二十八) ,如果没有看过,请观看上一章 一. 游标 一.一 什么是游标 虽然我们也可以通过筛选条件 WHERE 和 HAVING&#xff0c;或者是限定返回记录的关键…...

内生安全构建数据存储

一、数据安全成为防护核心&#xff0c;存储安全防护不容有失 1、数据作为企业的核心资产亟需重点保护&#xff0c;数据安全已成网络空间防护核心 2、国家高度重视关键信息基础设施的数据安全&#xff0c;存储安全已成为审核重点 二、存储安全是数据安全的关键一环&#xff0c;应…...

Docker+Consul+Registrator 实现服务注册与发现

第四阶段 时 间&#xff1a;2023年8月8日 参加人&#xff1a;全班人员 内 容&#xff1a; DockerConsulRegistrator 实现服务注册与发现 目录 一、服务注册中心引言 CAP理论是分布式架构中重要理论&#xff1a; 二、服务注册中心软件 &#xff08;一&#xff09;Zoo…...

深入学习JVM —— GC垃圾回收机制

前言 前面荔枝已经梳理了有关JVM的体系结构和类加载机制&#xff0c;也详细地介绍了JVM在类加载时的双亲委派模型&#xff0c;而在这篇文章中荔枝将会比较详细地梳理有关JVM学习的另一大重点——GC垃圾回收机制的相关知识&#xff0c;重点了解的比如对象可达性的判断、四种回收…...

Centos7.6 + Apache Ranger 2.4.0编译(docker方式)

目录 一、Ranger简介 1、组件列表 2、支持的数据引擎服务 二、主机环境准备 1、关闭防火墙 2、关闭SELINUX 3、安装docker 4、下载Ranger源码包 5、下载Maven安装包 三、编译Ranger源码 1、修改官方包中的build_ranger_using_docker.sh 2、运行脚本编译 3、编译检…...

LVS-DR模式集群配置

四台虚拟机 node1&#xff1a;128 node2&#xff1a;135 RS端&#xff1a; node3&#xff1a;130 node4&#xff1a;132 [rootnode2 ~]# yum install -y ipvsadm #配置LVS虚拟IP&#xff0c;没有ifconfig命令则先安装 [rootnode2 ~]# yum install net-tools -y #配置VIP [root…...

【数据分析】pandas( 二)

目录 简介&#xff1a; 一&#xff0c;1.1来自Series字典或字典 1.2 来自ndarray或者列表的字典&#xff1a; 1.3来自结构化或记录数组; 1.4来自字典列表&#xff1a; 1.4来自元组的字典&#xff1a; 1.5 来自Series 二&#xff0c;代替构造函数&#xff1a; 2.1DataFram…...

ffmpeg工具实用命令

说明&#xff1a;ffmpeg是一款非常好用的媒体操作工具&#xff0c;包含了许多对于视频、音频的操作&#xff0c;有些视频播放器里面实际上就是使用了ffmpeg。本文介绍ffmpeg的使用以及一些较为实用的命令。 安装 ffmpeg是命令行操作的&#xff0c;不需要安装&#xff0c;可在…...

zabbix API笔记

博客园原文 python简单demo 输出id为111主机的主机群组信息 import requests import json request_headers {"Content-Type": "application/json"} zabbix_url "http://xxx.xxx.xxx.xxx:8080/zabbix/api_jsonrpc.php" get_hostgroup_from_h…...

[HDLBits] Mt2015 q4a

Module A is supposed to implement the function z (x^y) & x. Implement this module. module top_module (input x, input y, output z);assign z(x^y)&x; endmodule...

HarmonyOS NEXT,生命之树初长成

在不同的神话体系中&#xff0c;都有着关于生命之树的记载。 比如在北欧神话中&#xff0c;一株巨大的树木联结着九大世界&#xff0c;其被称为“尤克特拉希尔”Yggdrasill。在中国的《山海经》中&#xff0c;也有着“建木”的传说&#xff0c;它“有九欘&#xff0c;下有九枸&…...

PHPstudy配置伪静态步骤,tp5.1的框架

搜索mod_rewrite.so&#xff0c;然后去掉前面的#&#xff08;即放开注释&#xff09; 2.找到index.php 同级文件.htaccess&#xff08;没有就新建&#xff09; 这些是tp5.1自带的内容&#xff0c;把它注释掉&#xff0c;是错误的内容&#xff0c;添加下面的这段配置 #<If…...

LeetCode:Hot100的python版本

94. 二叉树的中序遍历...

rv1126更新rknpu驱动教学

测试平台&#xff1a;易佰纳rv1126 38板 查看板端版本-------------------------------------------------- 1&#xff1a;查看npu驱动版本 dmesg | grep -i galcore&#xff0c;可以看到版本为6.4.3.5 2&#xff1a;查看rknn-server版本 strings /usr/bin/rknn_server | g…...

[机器学习]线性回归模型

线性回归 线性回归&#xff1a;根据数据&#xff0c;确定两种或两种以上变量间相互依赖的定量关系 函数表达式&#xff1a; y f ( x 1 , x 2 . . . x n ) y f(x_1,x_2...x_n) yf(x1​,x2​...xn​) ​ 回归根据变量数分为一元回归[ y f ( x ) yf(x) yf(x)]和多元回归[ y …...

Vue基于php医院预约挂号系统_6nrhh

随着信息时代的来临&#xff0c;过去的管理方式缺点逐渐暴露&#xff0c;对过去的医院预约挂号管理方式的缺点进行分析&#xff0c;采取计算机方式构建医院预约挂号系统。本文通过阅读相关文献&#xff0c;研究国内外相关技术&#xff0c;开发并设计一款医院预约挂号系统的构建…...

2023-08-07力扣今日六题-不错题

链接&#xff1a; 剑指 Offer 04. 二维数组中的查找 题意&#xff1a; 一个二维矩阵数组&#xff0c;在行上非递减&#xff0c;列上也非递减 解&#xff1a; 虽然在行列上非递减&#xff0c;但是整体并不有序&#xff0c;第一行存在大于第二行的数字&#xff0c;第一列存在…...

Elasticsearch搜索出现NAN异常

原因分析 Elasticsearch默认的打分&#xff0c;一般是不会出现异常的之所以会出现NAN异常&#xff0c;往往是因为我们重新计算了打分&#xff0c;使用了function_score核心原因是在function_score中&#xff0c;出现了计算异常&#xff0c;比如 0/0,比如log1p(x),x为负数等 真…...

(杭电多校)2023“钉耙编程”中国大学生算法设计超级联赛(6)

1001 Count 当k在区间(1n)/2的左边时,如图,[1,k]和[n-k1,n]完全相同,所以就m^(n-k) 当k在区间(1n)/2的右边时,如图,[1,n-k1]和[k,n]完全相同,所以也是m^(n-k) 别忘了特判,当k等于n时,n-k为0,然后a1a1,a2a2,..anan,所以没什么限制,那么就是m^n AC代码&#xff1a; #includ…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题&#xff1a; pgsql数据库通过备份数据库文件进行还原时&#xff0c;如果表中有自增序列&#xff0c;还原后可能会出现重复的序列&#xff0c;此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”&#xff0c;…...