当前位置: 首页 > news >正文

资料分析(三)—— 基期、现期、人口、增长量

基期

基期值 = 现期值 - 增长量 = 增长量/增长率 = 现期值/1+(间隔)增长率

化除为乘 :当增长率|r| <= 5% 时,\frac{A}{1+r} = A - A*R\frac{A}{1-r} \approx A + A*r

注:当选项首位相同,第二位也相同时,只能用直除

基期和差 =  \frac{A}{1+a} - \frac{B}{1+b} (结合选项,厂除

现期

现期值 = 基期值 + 增长量

保持增长量:基期值 + 增长量 ✖️ n (增长趋势)

保持增长率:基期值 ✖️(1+增长率)

不给增长率:r > 0, 增长量上升(反向利用选项)

按名义增长率求现期:现期值/ 1+ 名义增长率(1 + 实际增长率)    (给现期求现期)

人口

人口自然增长率 = 出生人口 - 死亡人口 / 年平均人口数

出生率 = 年内出生人数 / 年内总人数

增长量

公式

给现期和基期

现期值 - 基期值

给现期和增长率

现期值 / 1+ 增长率 ✖️ 增长率

百化分 |r| = 1/n 

  • 增长量 = 现期值 ➗ (n+1) r > 0
  • 减少量 = 现期值 ➗ (n-1) r < 0

放缩

3.33% = 33.3% ➗ 10 = 1/3 ➗ 10 = 1/30

取中

22.2% = 1/4.5  18.2% = 1/5.5  15.4% = 1/6.5

13.3% = 1/7.5  11.8% = 1/8.5  10.5% = 1/9.5

10.5% = 1/9.5

| r | < 5%

增长量 \approx 现期值 ✖️ 增长率

r > 100%

百化分或截位计算

倍数

多步除法,根据选项,截位列式

拉动增长率

拉动增长率 = 部分增长量 / 整体基期值

注:一般情况下,年份差n = 现期年份 - 基期年份 
五年规划期间(或考官限定):年份差为5年,基期往前推一年

五年规划:(基期往前推一年)

  • 十五期间” — — 2001年 - 2005年
  • 十一五期间” — — 2006年 - 2010年
  • 十二五期间” — — 2011年 - 2015年
  • 十一五期间” — — 2016年 - 2020年

年均增长量

年均增长量 = 末期值 - 初期值 / 年份差n

识别:平均每年增加... + 单位

比较大小

识别:增加/减少 + 最多/最少

给现期和基期

柱形图、折线图可看高度差

给现期和增长量

  • 同大则小,大大则大
  • 一大一小,分数比较,百化分

增长量绝对值比较

淘汰赛

增长率(r)

易错点

百分数与百分点

增长率与倍数:倍数 = 增长率 + 1

成数与翻番:30% = 3成;翻一番 = 2倍

增幅、降幅与变化幅度 降幅和变化幅度带绝对值进行比较

增幅 带符号进行比较 “高减低加” 正的不存在“降幅”

可正可负

降幅

必须为负,如“-20%”,降幅20%

变化(量)幅度

带r的绝对值比较,只看数值

解法

百分点

增幅:带正负号 高减低加

降幅: 带绝对值 高减低加

公式

给现期和基期

(现期值 - 基期值 )/ 基期值 = 现期值 / 基期值 - 1

给现期和增长量

增长量 /(现期值 - 增长量)= 增长量 / 基期值

比较大小

识别:增加、减少 + 最快/最慢

给现期和基期

  • 当 现期值 / 基期值 >= 2时,现期值/基期值 比较,当现期值/基期值 \approx 1时,用 增长量/基期值 比较(技巧:增长量变大,基期值变大,增长率变小
  • 增长率者折线图、增长率排序

给现期和增长量

增长量 / 基期量 比较,计算只能用增长量/基期量

特定增长率

  • 超过10%:现期值 > 1.1 × 基期值 (错位相加)
  • 超过20%:现期值 > 1.2 × 基期值 (错位2位)
  • 超过50%:现期值 > 1.5 × 基期值 (加本身一半)
  • 超过100%:2 × 增长量 > 现期值

间隔增长率

常用公式

r1 + r2 + r3 (r1, r2 绝对值小于10%时,r1r2可忽略)

间隔倍数

间隔增长率 + 1

间隔基期

现期值 / 1 + (间隔)增长率

相关文章:

资料分析(三)—— 基期、现期、人口、增长量

基期 基期值 现期值 - 增长量 增长量/增长率 现期值/1&#xff08;间隔)增长率 化除为乘 &#xff1a;当增长率&#xff5c;r| < 5% 时&#xff0c;&#xff0c; 注&#xff1a;当选项首位相同&#xff0c;第二位也相同时&#xff0c;只能用直除 基期和差 (结合选…...

Java 正则表达式【匹配与分组基本原理】

简介 我们一般使用正则表达式是用来处理字符串的&#xff0c;不管是实际的开发中还是我们的算法竞赛中&#xff0c;使用正则表达式绝对可以大大提升我们的效率。 正则表达式&#xff08;regular expression&#xff09;其实就是对字符串进行模式匹配的技术。 快速入门 我们这里…...

ThreadLocal源码解析

使用ThreadLocal可以为每个线程维护一个线程变量&#xff0c;使用场景为线程间隔离&#xff0c;线程内方法共享&#xff1b; 原理&#xff1a; Thread类中有一个实例属性ThreadLocalMap&#xff0c;ThreadLocalMap中存放的是Entry数组&#xff0c;Entry数组是ThreadLocal和Ob…...

RocketMQ 5.1.0 源码详解 | Producer 发送流程

文章目录 初始化DefaultMQProducer实例发送流程DefaultMQProducer#sendDefaultMQProducerImpl#sendMQClientInstance#updateTopicRouteInfoFromNameServer使用特定 topic 获取路由信息使用默认 topic 获取路由信息 DefaultMQProducerImpl#sendDefaultImpl发送流程总结 初始化De…...

电脑ip地址怎么改 ip地址怎么改到别的城市

一、ip地址怎么改到别的城市 1.ip地址怎么改到别的城市&#xff0c;1、重启WIFI路由设备 一般手机或电脑在家或公司上网时都是接入到路由器的WIFI网络,再由路由器分配上网IP地址,如果要更换上网IP那么重启路由器设备后,路由器会向网络运营商进行宽带的重新拨号,此时手机或电脑设…...

Android Studio实现列表展示图片

效果&#xff1a; MainActivity 类 package com.example.tabulation;import android.content.Intent; import android.os.Bundle; import android.view.View;import androidx.appcompat.app.AppCompatActivity; import androidx.recyclerview.widget.LinearLayoutManager; im…...

每天一道leetcode:300. 最长递增子序列(动态规划中等)

今日份题目&#xff1a; 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&#xff0c;[3,6,2,7] 是数组 [0,3,1,6,2,2,7] …...

【无监督】2、MAE | 自监督模型提取的图像特征也很能打!(CVPR2022 Oral)

文章目录 一、背景二、方法三、效果 论文&#xff1a;Masked Autoencoders Are Scalable Vision Learners 代码&#xff1a;https://github.com/facebookresearch/mae 出处&#xff1a;CVPR2022 Oral | 何凯明 | FAIR 一、背景 本文的标题突出了两个词&#xff1a; masked…...

pytorch单机多卡后台运行

nohup sh ./train_chat.sh > train_chat20230814.log 2>1&参考资料 Pytorch单机多卡后台运行的解决办法...

linux配置上网 linux adsl拨号上网设置

Linux里面配置ADSL上网是件很麻烦的事。但配置完成之后就能开机自动拨号上网&#xff0c;可谓十分的方便。支持的系统有Redhat,CentOS,SuSE,FreeBSD,Ubuntu等常见的Linux。 工具/原料 ADSL网络&#xff0c;电信&#xff0c;网通&#xff0c;移动等常见宽带。 Linux系统的安装光…...

XML学习基础知识归纳(一)

一、XML基本概述 &#xff08;1&#xff09;概念&#xff1a;XML是可扩展的标记语言&#xff0c;xml文档的后缀名为 .xml &#xff08;2&#xff09;作用&#xff1a;用来用来传输和存储数据&#xff0c;不用于表现和展示数据&#xff0c;这点呢相比于HTML来说是不同的&#…...

2023.8.14论文阅读

文章目录 ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation摘要本文方法实验结果 DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection摘要本文方法实验结果 ESPNet: Efficient Spatial Pyramid of Dilated Convo…...

FL Studio for Windows-21.1.0.3713中文直装版功能介绍及系统配置要求

FL Studio 21简称FL水果软件,全称是&#xff1a;Fruity Loops Studio编曲&#xff0c;由于其Logo长的比较像一款水果因此&#xff0c;在大家更多的是喜欢称他为水果萝卜&#xff0c;FL studio21是目前最新的版本&#xff0c;这是一款可以让你的计算机就像是一个全功能的录音室&…...

基于网格变形的二维图像变形算法:C++实现与应用

在计算机图形学中&#xff0c;图像变形是一种常见的技术&#xff0c;它可以改变图像的形状和结构&#xff0c;以满足特定的视觉效果或者应用需求。本文将介绍一种基于网格变形的二维图像变形算法&#xff0c;并使用C进行实现。 一、算法原理 网格变形是一种基于网格的图像变形…...

【数据结构】八大排序详解

&#x1f680; 作者简介&#xff1a;一名在后端领域学习&#xff0c;并渴望能够学有所成的追梦人。 &#x1f40c; 个人主页&#xff1a;蜗牛牛啊 &#x1f525; 系列专栏&#xff1a;&#x1f6f9;数据结构、&#x1f6f4;C &#x1f4d5; 学习格言&#xff1a;博观而约取&…...

VSCode如何设置高亮

一、概述 本文主要介绍在 VSCode 看代码时&#xff0c;怎样使某个单词高亮显示&#xff0c;主要通过以下三步实现&#xff1a; 安装 highlight-words 插件 配置 highlight-words 插件 设置高亮快捷键F8 工作是嵌入式开发的&#xff0c;代码主要是C/C的&#xff0c;之前一直用…...

密钥大全ubuntu

VMware Workstation Tech Preview 20H2 GG1JR-APD1P-0857Q-DQQN9-PU2CA VMware Workstation v16 Pro for Windows&#xff08;反馈失效&#xff09; ZF3R0-FHED2-M80TY-8QYGC-NPKYF YF390-0HF8P-M81RQ-2DXQE-M2UT6 ZF71R-DMX85-08DQY-8YMNC-PPHV8 VMware Workstation v15 f…...

Spring Task入门案例

Spring Task 是Spring框架提供的任务调度工具&#xff0c;可以按照约定的时间自动执行某个代码逻辑。 定位&#xff1a;定时任务框架 作用&#xff1a;定时自动执行某段Java代码 强调&#xff1a;只要是需要定时处理的场景都可以使用Spring Task 1. cron表达式 cron表达式…...

针对Android项目蓝牙如何学习

一、概述(Overview) 蓝牙是一种专有的开放式无线技术标准,用于在固定和移动设备之间进行短距离数据交换(使用2400–2480 MHz ISM波段的短波长无线电传输),从而创建具有高度安全性的个人局域网(PANs)。由电信供应商爱立信(telecoms vendor Ericsson)于1994年创建,[1…...

C++学习笔记总结练习:内存分配器编程实现

内存分配器练习 C内存分配器是用于管理程序运行时内存的工具。它负责分配和释放内存&#xff0c;以满足程序在运行过程中的动态内存需求。在C中&#xff0c;有几种内存分配器可供选择&#xff0c;包括操作系统提供的默认分配器、自定义分配器和第三方库提供的分配器。 默认分配…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...