图神经网络 day2 图的分类
图神经网络基础算法
- 1 GCN
- 2 GraphSAGE
- 2.1 采样:采样固定长度的邻居
- 2.2 聚合
- 2.3 GraphSAGE_minibatch
- 2.4 GraphSAGE_embedding
- 3 GAT
- 4. 图网络的分类
- 4.1 递归图神经网络 RGNN
- 4.2 图卷积神经网络GCN
- 4.3 图注意力网络 GAT
- 4.4 图自动编码 GAE
- 4.5 图时空网络 GSTN
- 4.6 图生成网络 GGN
- 4.7 图强化学些 GRL
- 4.8 图对抗方法GAM
- 4.9 更通用的框架
- 4.9.1 消息传递网络 MPNN
- 4.9.2 非局部神经网络 NLNN
- 4.9.3 图神经网络 GN
- MPNN应用于GN
- NLNN应用于GN
- 4.10 其他图
- 1. 异构图
- 2. 二部图
- 3. 多维图
- 4. 符号图
- 5. 超图
- 6. 动态图
1 GCN
公式:



节点的特征从C维(X1)——》F维(Z1),并 进行softmax操作,得到每一个节点对应的label(Y1)
2 GraphSAGE


实例:
- 聚合周围邻居信息(领域特征),下图是求平均值
- 把邻居信息拼接到一起,再经过一个可学习的w参数

2.1 采样:采样固定长度的邻居

节点4是单向的,所以不考虑

2.2 聚合
要满足以下性质:
- 聚合函数是对称的
- 聚合函数的输入和顺序是不变的

2.3 GraphSAGE_minibatch
Minbatch : GraphSAGE采用聚合邻居,和GCN使用全图方式,变成采样。这样在minbatch下,可以不使用全图信息,这使得在大规模图上训练变得可行。把大图转换成小图

例子


2.4 GraphSAGE_embedding

作者提出的假设:如果这两个节点很近,那么他们的表征应该是相似的,反之,则他们的表征会有所不同
3 GAT

求得节点i和周围节点的attention系数,再通过系数与邻居节点加权求和,那么就求得了该节点聚合周围节点后的特征。

多头注意力机制

三个节点表示了三类特征

4. 图网络的分类



4.1 递归图神经网络 RGNN

递归和卷积都是学习特征,很明显,卷积图神经网络的卷积层参数可以是不一致的的
4.2 图卷积神经网络GCN

得到节点有序序列
4.3 图注意力网络 GAT
4.4 图自动编码 GAE
GAE:encoder用GCN替换,得出的特征矩阵Z,decoder替换成Z的转置,通过转置生成的图与原图比较得出最小化结构性误差,通过最小损失函数可以得出GCN的参数

VAE课程,李宏毅老师课程∶
https://www.bilibili.com/video/BV1tZ4y1L7gu?from=search&seid=15594710630639930905
4.5 图时空网络 GSTN
同时考虑图的空间性和时间维度·比如在交通邻域中﹐速度传感器会随时间变化的时间维度﹐不同的传感器之间也会形成连接的空间维度的边。
当前的许多方法都应用GCN来捕获图的依赖性,使用一些RNN或CNN对时间依赖性建模。
4.6 图生成网络 GGN
通过RNN或者GAN的方式生成网络。图生成网络的
一个有前途的应用领域是化合物合成。在化学图中﹐原子被视为节点﹐化学键被视为边·任务是发现具有某些化学和物理性质的新的可合成分子。
4.7 图强化学些 GRL
通过RNN或者GAN的方式生成网络。图生成网络的
一个有前途的应用领域是化合物合成。在化学图中﹐原子被视为节点﹐化学键被视为边·任务是发现具有某些化学和物理性质的新的可合成分子。
4.8 图对抗方法GAM
GAN的思想﹐生成器生成样本﹐分类器去判别样本。
4.9 更通用的框架
- MPNN∶图神经网络和图卷积/ Message Passing Neural Networks
- NLNN︰统一Attention/ Non-local Neural Networks
- GN︰统一以上/ Graph Networks


4.9.1 消息传递网络 MPNN

Mt:聚合周围邻居信息
Ut:更新节点在下一层的特征表示
前面这两部分就跟GraphSAGE相似;最后,组合在一起就成了图的表示y hat。
4.9.2 非局部神经网络 NLNN

f()求的就是节点i和相邻节点的attention系数,再求g()得出的该节点的特征,再归一化就是下一层的特征表示yi‘。
4.9.3 图神经网络 GN

一个GN块包含三个更新函数函数φ和三个聚合函数ρ,各符号意义如下图所示:

一个例子:Vsk:sender node;Vrk:receiver node;

计算流程如下:

整个算法的流程:

MPNN应用于GN

NLNN应用于GN

4.10 其他图

1. 异构图
不同节点构成的图

2. 二部图
将图中节点分为两部分,每一边不跟自己相连

3. 多维图
多种关系所组成的图

4. 符号图
图之间的连接有正反符号

5. 超图
一条边包含两个以上的节点。每个边所包含的顶点个数都是相同且为k个的,就可以被称为k阶超图,常见的图就是2阶超图。

6. 动态图

上面提到的图是静态的,观察时节点之间的连接是固定的。但是,在许多实际应用中,随着新节点被添加到图中,图在不断发展,并且新边也在不断出现。例如,在诸如Facebook的在线社交网络中,用户可以不断与他人建立友谊,新用户也可以随时加入Facebook。这些类型的演化图可以表示为动态图,其中每个节点或边都与时间戳关联。
相关文章:
图神经网络 day2 图的分类
图神经网络基础算法 1 GCN2 GraphSAGE2.1 采样:采样固定长度的邻居2.2 聚合2.3 GraphSAGE_minibatch2.4 GraphSAGE_embedding 3 GAT4. 图网络的分类4.1 递归图神经网络 RGNN4.2 图卷积神经网络GCN4.3 图注意力网络 GAT4.4 图自动编码 GAE4.5 图时空网络 GSTN4.6 图生…...
CentOS防火墙操作:开启端口、开启、关闭、配置
一、基本使用 启动: systemctl start firewalld 关闭: systemctl stop firewalld 查看状态: systemctl status firewalld 开机禁用 : systemctl disable firewalld 开机启用 : systemctl enable firewalld systemctl是…...
Chromium 如何在c++里面控制扩展加载
扩展安装 主要是通过UserMayLoad 函数控制,true允许加载,否则禁用 引自chromiun参考。【一般可以根据扩展ID禁用】 chrome\browser\extensions\standard_management_policy_provider.cc bool StandardManagementPolicyProvider::UserMayLoad( const Ext…...
分类预测 | MATLAB实现MTBO-CNN多输入分类预测
分类预测 | MATLAB实现MTBO-CNN多输入分类预测 目录 分类预测 | MATLAB实现MTBO-CNN多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现MTBO-CNN多输入分类预测 2.代码说明:基于登山队优化算法(MTBO)、卷积神经…...
操作符和表达式求值
目录 1.运算符的优先级和结合性 1.1运算符的优先级 1.2结合性 2.操作符的使用最终带来的是一个表达式的值 2.1.隐式类型转换(整型提升) 2.1.1整形提升的例子 2.2算术转换 1.运算符的优先级和结合性 运算符是编程语言中的基本元素之一,主…...
Unity Spine帧事件
SpinePro中添加事件帧 首先 选中右上角的层级树 然后选择事件选项 最后在右下角看到 新建 点击它 新建一个事件 点击左上角的设置按钮 弹出编辑窗口 编辑窗口 在右上角 动画栏 可以切换对应的动画 点坐边的那个小灰点来切换 亮点代表当前动画 选中帧 添加事件 点击对应事件…...
AE使用(一)
打开AE 点击“新建合成” 注意参数:宽度高度是视频是横屏还是竖屏。发布在抖音上,需要做出来竖屏效果;发布在视频网站中需要做出横屏效果。没用特殊需求,默认参数就行。 导入素材:左键双击“导入素材区”的空白部分。 …...
YOLOv5、YOLOv8改进:MobileViT:轻量通用且适合移动端的视觉Transformer
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer 论文:https://arxiv.org/abs/2110.02178 1简介 MobileviT是一个用于移动设备的轻量级通用可视化Transformer,据作者介绍,这是第一次基于轻量级CNN网络性…...
06-4_Qt 5.9 C++开发指南_MDI应用程序设计
文章目录 1. MDI简介2. 文档窗口类 QFormDoc 的设计3. MDI主窗口设计与子窗口的使用3.1 主窗口界面设计3.2 MDI子窗口的创建与加入3.3 QMdiArea 常用功能函数3.4 MDI的信号 4. 源码4.1 qwmainwindow.h4.2 qwmainwindow.cpp 1. MDI简介 传统的应用程序设计中有多文档界面(Multi…...
【SCI征稿】3区SCI,正刊,智能传感、机器学习、智能检测与测量等均可
影响因子:IF:2.0-3.0 期刊分区:JCR3区,中科院4区 检索情况:SCIE在检,正刊 征稿领域:智能技术在测量与检测中的应用研究,如: ● 复杂系统的智能传感和高级故障诊断 ●…...
神经网络ANN(MLP),CNN以及RNN区别和应用
1. Artificial Neural Network(ANN) 又称为Multilayer Perception Model(MLP) 2. CNN AAA 3. RNN 22 先占坑,后期再整理 References [1] CNN vs.RNN vs.ANN——浅析深度学习中的三种神经网络 - 知乎 [2] https://www.youtube.com/watch?vu7obuspdQu4 [3] 深…...
CUDA、cuDNN以及Pytorch介绍
文章目录 前言一、CUDA二、cuDNN三、Pytorch 前言 在讲解cuda和cuDNN之前,我们首先来了解一下英伟达(NVIDA)公司。 NVIDIA是一家全球领先的计算机技术公司,专注于图形处理器(GPU)和人工智能(…...
使用shift关键字,写一个带二级命令的脚本(如:docker run -a -b -c中的run)
省流:shift关键字 探索思路 最近有一个小小的需求,写一个类似于docker run -a -b -c这样的脚本,这个脚本名为doline,它本身可以执行(doline -a -b -c),同时又带有几个如run、init、start这样的…...
MySQL学习笔记 - 进阶部分
MySQL进阶部分 字符集的相关操作:字符集和比较规则:utf8与utf8mb4:比较规则:常见的字符集和对应的Maxlen: Centos7中linux下配置字符集:各个级别的字符集:执行show variables like %character%语…...
微信小程序实现左滑删除
一、效果 二、代码 实现思路使用的是官方提供的 movable-area:注意点,需要设置其高度,否则会出现列表内容重叠的现象。由于movable-view需要向右移动,左滑的时候给删除控件展示的空间,故 movable-area 需要左移 left:…...
安防视频监控有哪些存储方式?哪种存储方式最优?
视频监控系统涉及到大量的视频数据,需要对这些数据进行存储,以备日后查看或备份。视频监控的存储需求需要根据场所的实际情况进行选择,以保证监控数据的有效存储和日后的调阅、回溯。 当前视频监控的存储方式,通常有以下几种&…...
02-C++数据类型-高级
数据类型-高级 4、复合类型 4.4、结构简介 struct inflatable {char name[20];float vol;double price; };inflatable vincent; //C struct inflatable goose; //C例子 // structur.cpp -- a simple structure #include <iostream> struct inflatable // structu…...
Kotlin实战之获取本地配置文件、远程Apollo配置失败问题排查
背景 Kotlin作为一门JVM脚本语言,收到很多Java开发者的青睐。 项目采用JavaKotlin混合编程。Spring Boot应用开发,不会发生变动的配置放在本地配置文件,可能会变化的配置放在远程Apollo Server。 问题 因为业务需要,需要增加一…...
TCP协议的报头格式和滑动窗口
文章目录 TCP报头格式端口号序号和确认序号确认应答(ACK)机制超时重传机制 首部长度窗口大小报文类型URGACKSYNPSHFINRST 滑动窗口滑动窗口的大小怎么设定怎么变化滑动窗口变化问题 TCP报头格式 端口号 两个端口号比较好理解,通过端口号来找…...
java 使用log4j显示到界面和文件 并格式化
1.下载log4j jar包https://dlcdn.apache.org/logging/log4j/2.20.0/apache-log4j-2.20.0-bin.zip 2. 我只要到核心包 ,看需要 sources是源码包,可以看到说明。在IDEA里先加入class jar后,再双击这个class jar包或或右键选Navigate ,Add ,…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
