当前位置: 首页 > news >正文

F1-score解析

报错:valueError: Target is multiclass but average=‘binary’. Please choose another average setting, one of
原因:使用from sklearn.metrics import f1_score多类别计算F1-score时报错,改函数的参数即可,如:f1_score(true_labels, predicted_labels, average='micro')

计算多类别的 F1-score,使用 Scikit-learn 库中的 f1_score 函数。以下是一个示例代码,演示如何计算多类别的 F1-score

from sklearn.metrics import f1_score
import numpy as np# 示例真实标签和预测标签
true_labels = np.array([0, 1, 2, 0, 1, 2, 2, 0, 1, 1])
predicted_labels = np.array([0, 1, 1, 0, 1, 2, 1, 0, 2, 1])# 计算多类别的F1-score
f1_macro = f1_score(true_labels, predicted_labels, average='macro')
f1_micro = f1_score(true_labels, predicted_labels, average='micro')
f1_weighted = f1_score(true_labels, predicted_labels, average='weighted')print("F1-score (macro):", f1_macro)
print("F1-score (micro):", f1_micro)
print("F1-score (weighted):", f1_weighted)
在上面的示例中,true_labels 是真实的类别标签,predicted_labels 是模型的预测标签。
我们使用 f1_score 函数计算了三种不同的 F1-score,分别是宏平均 (macro)、微平均 (micro) 和加权平均 (weighted)。宏平均 (macro):计算每个类别的 F1-score,然后对所有类别取平均值。
微平均 (micro):通过计算总体的真阳性、假阳性和假阴性,然后计算出总体的 precision、recall 和 F1-score。
加权平均 (weighted):对每个类别的 F1-score 进行加权平均,权重是每个类别的样本数。

相关文章:

F1-score解析

报错:valueError: Target is multiclass but average‘binary’. Please choose another average setting, one of 原因:使用from sklearn.metrics import f1_score多类别计算F1-score时报错,改函数的参数即可,如:f1_s…...

windows11下配置vscode中c/c++环境

本文默认已经下载且安装好vscode,主要是解决环境变量配置以及编译task、launch文件的问题。 自己尝试过许多博客,最后还是通过这种方法配置成功了。 Linux(ubuntu 20.04)配置vscode可以直接跳转到配置task、launch文件,不需要下载mingw与配…...

Max Sum

一、题目 Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 (-1) 5 4 14. Input The first line of the input contains an integer T(1<T<…...

Field injection is not recommended

文章目录 1. 引言2. 不推荐使用Autowired的原因3. Spring提供了三种主要的依赖注入方式3.1. 构造函数注入&#xff08;Constructor Injection&#xff09;3.2. Setter方法注入&#xff08;Setter Injection&#xff09;3.3. 字段注入&#xff08;Field Injection&#xff09; 4…...

C#字符串占位符替换

using System;namespace myprog {class test{static void Main(string[] args){string str1 string.Format("{0}今年{1}岁&#xff0c;身高{2}cm&#xff0c;月收入{3}元&#xff1b;", "小李", 23, 177, 5000);Console.WriteLine(str1);Console.ReadKey(…...

ChatGPT等人工智能编写文章的内容今后将成为常态

BuzzFeed股价上涨200%可能标志着“转向人工智能”媒体趋势的开始。 周四&#xff0c;一份内部备忘录被华尔街日报透露BuzzFeed正计划使用ChatGPT聊天机器人-风格文本合成技术来自OpenAI&#xff0c;用于创建个性化盘问和将来可能的其他内容。消息传出后&#xff0c;BuzzFeed的…...

【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 梯度提升树(Gradient Boosting Trees)是一种集成学习方法,用于解决分类和回归问题。它通过将多个弱学习器(通常…...

什么叫做云计算?

相信大多数人对云计算或者是云服务的认识还停留在仅仅听过这个名词&#xff0c;但是对其真正的定义或者意义还不甚了解的层面。甚至有些技术人员&#xff0c;如果日常的业务不涉及到云服务&#xff0c;可能对其也只是一知半解的程度。首先云计算准确的讲只是云服务中的一部分&a…...

深度学习Batch Normalization

批标准化&#xff08;Batch Normalization&#xff0c;简称BN&#xff09;是一种用于深度神经网络的技术&#xff0c;它的主要目的是解决深度学习模型训练过程中的内部协变量偏移问题。简单来说&#xff0c;当我们在训练深度神经网络时&#xff0c;每一层的输入分布都可能会随着…...

el-table实现懒加载(el-table-infinite-scroll)

2023.8.15今天我学习了用el-table对大量的数据进行懒加载。 效果如下&#xff1a; 1.首先安装&#xff1a; npm install --save el-table-infinite-scroll2 2.全局引入&#xff1a; import ElTableInfiniteScroll from "el-table-infinite-scroll";// 懒加载 V…...

vueRouter回顾

关于vueRouter的两种路由模式 “history” 模式使用正常的 URL 格式&#xff0c;例如 https://example.com/path。“hash” 模式将路由信息添加到 URL 的哈希部分&#xff08;#&#xff09;后面&#xff0c;例如 https://example.com/#/path。 1、history模式&#xff1a;没有…...

大规模无人机集群算法flocking(蜂群)

matlab2016b正常运行...

【第三阶段】kotlin语言的split

const val INFO"kotlin,java,c,c#" fun main() {//list自动类型推断成listList<String>val listINFO.split(",")//直接输出list集合&#xff0c;不解构println("直接输出list的集合元素&#xff1a;$list")//类比c有解构&#xff0c;ktoli…...

机器学习笔记值优化算法(十四)梯度下降法在凸函数上的收敛性

机器学习笔记之优化算法——梯度下降法在凸函数上的收敛性 引言回顾&#xff1a;收敛速度&#xff1a;次线性收敛二次上界引理 梯度下降法在凸函数上的收敛性收敛性定理介绍证明过程 引言 本节将介绍梯度下降法在凸函数上的收敛性。 回顾&#xff1a; 收敛速度&#xff1a;次…...

iphone拷贝照片中间带E自动去重软件,以及java程序如何打包成jar和exe

文章目录 一、前提二、问题描述三、原始处理方式四、程序处理4.1 java程序如何打包exe4.1.1 首先打包jar4.1.2 开始生成exe4.1.3 软件使用方式 4.2 更换图标4.2.1 更换swing的打包jar图标4.2.2 更换exe图标 4.3 如何使生成的exe在没有java环境的电脑上运行4.3.1 Inno Setup打包…...

不同分类器对数据的处理

"""基于鸢尾花的不同分类器的效果比对:step1&#xff1a;准备数据&#xff1b;提取数据的特征向量X,Y将Y数据采用LabelEncoder转化为数值型数据;step2:将提取的特征向量X,Y进行拆分(训练集与测试集)step3:构建不同分类器并设置参数&#xff0c;例如&#xff1a;…...

十面骰子、

十面骰子(一): v 有一个十面的骰子&#xff0c;每一面分别为1-10&#xff0c;不断投掷骰子&#xff0c;投10000次&#xff0c;统计每一面1-10出现的次数或概率. v 提示&#xff1a;可用rand()产生1-10之间的随机数&#xff0c;再统计1-10出现的机会&#xff0c;存放于数组里,…...

IDE的下载和使用

IDE 文章目录 IDEJETBRAIN JETBRAIN 官网下载对应的ide 激活方式 dxm的电脑已经把这个脚本下载下来了&#xff0c;脚本是macjihuo 以后就不用买了...

华为OD机试真题【字母组合】

1、题目描述 【字母组合】 数字0、1、2、3、4、5、6、7、8、9分别关联 a~z 26个英文字母。 0 关联 “a”,”b”,”c” 1 关联 “d”,”e”,”f” 2 关联 “g”,”h”,”i” 3 关联 “j”,”k”,”l” 4 关联 “m”,”n”,”o” 5 关联 “p”,”q”,”r” 6 关联 “s”,”t” 7…...

Midjourney Prompt 提示词速查表 v5.2

Midjourney 最新的版本更新正不断推出令人兴奋的新功能。这虽然不断扩展了我们的AI绘图工具箱&#xff0c;但有时也会让我们难以掌握所有实际可以使用的功能和参数。 针对此问题, 小编整理了 "Midjourney Prompt 提示词速查表"&#xff0c;这是一个非常方便的 Midjo…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7

在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤&#xff1a; 第一步&#xff1a; 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为&#xff1a; // 改为 v…...