当前位置: 首页 > news >正文

【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据)

  • 1.模型原理
  • 2.模型参数
  • 3.文件结构
  • 4.Excel数据
  • 5.下载地址
  • 6.完整代码
  • 7.运行结果

1.模型原理

梯度提升树(Gradient Boosting Trees)是一种集成学习方法,用于解决分类和回归问题。它通过将多个弱学习器(通常是决策树)组合成一个强学习器,以逐步减小预测误差。下面是梯度提升树的模型原理和数学公式的解释。

模型原理:

  1. 损失函数(Loss Function): 在梯度提升树中,首先定义一个损失函数,用来衡量模型的预测值与实际值之间的差距。对于分类问题,常用的损失函数包括对数损失(Log Loss)和指数损失(Exponential Loss),而对于回归问题,通常使用均方误差(Mean Squared Error)作为损失函数。

  2. 基本模型(Base Learner): 梯度提升树使用决策树作为弱学习器,也可以使用其他

相关文章:

【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 梯度提升树(Gradient Boosting Trees)是一种集成学习方法,用于解决分类和回归问题。它通过将多个弱学习器(通常…...

什么叫做云计算?

相信大多数人对云计算或者是云服务的认识还停留在仅仅听过这个名词,但是对其真正的定义或者意义还不甚了解的层面。甚至有些技术人员,如果日常的业务不涉及到云服务,可能对其也只是一知半解的程度。首先云计算准确的讲只是云服务中的一部分&a…...

深度学习Batch Normalization

批标准化(Batch Normalization,简称BN)是一种用于深度神经网络的技术,它的主要目的是解决深度学习模型训练过程中的内部协变量偏移问题。简单来说,当我们在训练深度神经网络时,每一层的输入分布都可能会随着…...

el-table实现懒加载(el-table-infinite-scroll)

2023.8.15今天我学习了用el-table对大量的数据进行懒加载。 效果如下: 1.首先安装: npm install --save el-table-infinite-scroll2 2.全局引入: import ElTableInfiniteScroll from "el-table-infinite-scroll";// 懒加载 V…...

vueRouter回顾

关于vueRouter的两种路由模式 “history” 模式使用正常的 URL 格式,例如 https://example.com/path。“hash” 模式将路由信息添加到 URL 的哈希部分(#)后面,例如 https://example.com/#/path。 1、history模式:没有…...

大规模无人机集群算法flocking(蜂群)

matlab2016b正常运行...

【第三阶段】kotlin语言的split

const val INFO"kotlin,java,c,c#" fun main() {//list自动类型推断成listList<String>val listINFO.split(",")//直接输出list集合&#xff0c;不解构println("直接输出list的集合元素&#xff1a;$list")//类比c有解构&#xff0c;ktoli…...

机器学习笔记值优化算法(十四)梯度下降法在凸函数上的收敛性

机器学习笔记之优化算法——梯度下降法在凸函数上的收敛性 引言回顾&#xff1a;收敛速度&#xff1a;次线性收敛二次上界引理 梯度下降法在凸函数上的收敛性收敛性定理介绍证明过程 引言 本节将介绍梯度下降法在凸函数上的收敛性。 回顾&#xff1a; 收敛速度&#xff1a;次…...

iphone拷贝照片中间带E自动去重软件,以及java程序如何打包成jar和exe

文章目录 一、前提二、问题描述三、原始处理方式四、程序处理4.1 java程序如何打包exe4.1.1 首先打包jar4.1.2 开始生成exe4.1.3 软件使用方式 4.2 更换图标4.2.1 更换swing的打包jar图标4.2.2 更换exe图标 4.3 如何使生成的exe在没有java环境的电脑上运行4.3.1 Inno Setup打包…...

不同分类器对数据的处理

"""基于鸢尾花的不同分类器的效果比对:step1&#xff1a;准备数据&#xff1b;提取数据的特征向量X,Y将Y数据采用LabelEncoder转化为数值型数据;step2:将提取的特征向量X,Y进行拆分(训练集与测试集)step3:构建不同分类器并设置参数&#xff0c;例如&#xff1a;…...

十面骰子、

十面骰子(一): v 有一个十面的骰子&#xff0c;每一面分别为1-10&#xff0c;不断投掷骰子&#xff0c;投10000次&#xff0c;统计每一面1-10出现的次数或概率. v 提示&#xff1a;可用rand()产生1-10之间的随机数&#xff0c;再统计1-10出现的机会&#xff0c;存放于数组里,…...

IDE的下载和使用

IDE 文章目录 IDEJETBRAIN JETBRAIN 官网下载对应的ide 激活方式 dxm的电脑已经把这个脚本下载下来了&#xff0c;脚本是macjihuo 以后就不用买了...

华为OD机试真题【字母组合】

1、题目描述 【字母组合】 数字0、1、2、3、4、5、6、7、8、9分别关联 a~z 26个英文字母。 0 关联 “a”,”b”,”c” 1 关联 “d”,”e”,”f” 2 关联 “g”,”h”,”i” 3 关联 “j”,”k”,”l” 4 关联 “m”,”n”,”o” 5 关联 “p”,”q”,”r” 6 关联 “s”,”t” 7…...

Midjourney Prompt 提示词速查表 v5.2

Midjourney 最新的版本更新正不断推出令人兴奋的新功能。这虽然不断扩展了我们的AI绘图工具箱&#xff0c;但有时也会让我们难以掌握所有实际可以使用的功能和参数。 针对此问题, 小编整理了 "Midjourney Prompt 提示词速查表"&#xff0c;这是一个非常方便的 Midjo…...

自动驾驶——驶向未来的革命性技术

自动驾驶——驶向未来的革命性技术 自动驾驶的组件自动驾驶的优势自动驾驶的应用自动驾驶的未来中国的自动驾驶 自动驾驶是一种技术&#xff0c;它允许车辆在没有人类驾驶员的情况下自主地进行行驶。它利用各种传感器、计算机视觉、人工智能和机器学习算法来感知和理解周围环境…...

PAT (Advanced Level) 甲级 1004 Counting Leaves

点此查看所有题目集 A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child. Input Specification: Each input file contains one test case. Each case starts with a line containing 0<N<100, …...

最长递增子序列——力扣300

int lengthOfLIS(vector<int>& nums) {int len=1, n=nums.size();if...

邮递员送信 单源最短路+反向建边

有一个邮递员要送东西&#xff0c;邮局在节点 1 1 1。他总共要送 n − 1 n−1 n−1样东西&#xff0c;其目的地分别是节点 2 2 2到节点 n n n。所有的道路都是单行的&#xff0c;共有 m m m条道路。邮递员每次只能带一样东西&#xff0c;运送每件物品过后必须返回邮局。求送完东…...

git的常用操作

1. git查看dev分支与master分支的情况 要查看特定分支&#xff08;如dev和master&#xff09;的情况&#xff0c;您可以使用以下命令&#xff1a; git log --oneline master..dev 这将显示在dev分支上存在但不在master分支上的提交记录的简要信息。每条记录都包括提交的哈希…...

vscode搭建java开发环境

一、配置extensions环境变量VSCODE_EXTENSIONS&#xff0c; 该环境变量路径下的存放安装组件&#xff1a; 二、setting配置文件 {"java.jdt.ls.java.home": "e:\\software\\jdk\\jdk17",// java运行环境"java.configuration.runtimes": [{"…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...