当前位置: 首页 > news >正文

TiDB数据库从入门到精通系列之二:TiDB数据库的简介

TiDB数据库从入门到精通系列之二:TiDB数据库的简介

  • 一、TiDB数据库的简介
  • 二、五大核心特性
  • 三、四大核心应用场景
  • 四、TiDB数据库与MySQL数据库的兼容性

一、TiDB数据库的简介

  • TiDB是开源分布式关系型数据库,是一款同时支持在线事务处理与在线分析处理 (Hybrid Transactional and Analytical Processing, HTAP) 的融合型分布式数据库产品,具备水平扩容或者缩容、金融级高可用、实时 HTAP、云原生的分布式数据库、兼容 MySQL 5.7 协议和 MySQL 生态等重要特性。目标是为用户提供一站式 OLTP (Online Transactional Processing)、OLAP (Online Analytical Processing)、HTAP 解决方案。TiDB 适合高可用、强一致要求较高、数据规模较大等各种应用场景。

二、五大核心特性

一键水平扩容或者缩容

  • 得益于 TiDB 存储计算分离的架构的设计,可按需对计算、存储分别进行在线扩容或者缩容,扩容或者缩容过程中对应用运维人员透明。

金融级高可用

  • 数据采用多副本存储,数据副本通过 Multi-Raft 协议同步事务日志,多数派写入成功事务才能提交,确保数据强一致性且少数副本发生故障时不影响数据的可用性。可按需配置副本地理位置、副本数量等策略满足不同容灾级别的要求。

实时 HTAP

  • 提供行存储引擎 TiKV、列存储引擎 TiFlash 两款存储引擎,TiFlash 通过 Multi-Raft Learner 协议实时从 TiKV 复制数据,确保行存储引擎 TiKV 和列存储引擎 TiFlash 之间的数据强一致。TiKV、TiFlash 可按需部署在不同的机器,解决 HTAP 资源隔离的问题。

云原生的分布式数据库

  • 专为云而设计的分布式数据库,通过 TiDB Operator 可在公有云、私有云、混合云中实现部署工具化、自动化。

兼容 MySQL 5.7 协议和 MySQL 生态

  • 兼容 MySQL 5.7 协议、MySQL 常用的功能、MySQL 生态,应用无需或者修改少量代码即可从 MySQL 迁移到 TiDB。提供丰富的数据迁移工具帮助应用便捷完成数据迁移。

三、四大核心应用场景

对数据一致性及高可靠、系统高可用、可扩展性、容灾要求较高的金融行业属性的场景

  • 众所周知,金融行业对数据一致性及高可靠、系统高可用、可扩展性、容灾要求较高。传统的解决方案是同城两个机房提供服务、异地一个机房提供数据容灾能力但不提供服务,此解决方案存在以下缺点:资源利用率低、维护成本高、RTO (Recovery Time Objective) 及 RPO (Recovery Point Objective) 无法真实达到企业所期望的值。TiDB 采用多副本 + Multi-Raft 协议的方式将数据调度到不同的机房、机架、机器,当部分机器出现故障时系统可自动进行切换,确保系统的 RTO <= 30s 及 RPO = 0。

对存储容量、可扩展性、并发要求较高的海量数据及高并发的 OLTP 场景

  • 随着业务的高速发展,数据呈现爆炸性的增长,传统的单机数据库无法满足因数据爆炸性的增长对数据库的容量要求,可行方案是采用分库分表的中间件产品或者 NewSQL 数据库替代、采用高端的存储设备等,其中性价比最大的是 NewSQL 数据库,例如:TiDB。TiDB 采用计算、存储分离的架构,可对计算、存储分别进行扩容和缩容,计算最大支持 512 节点,每个节点最大支持 1000 并发,集群容量最大支持 PB 级别。

Real-time HTAP 场景:

  • 随着 5G、物联网、人工智能的高速发展,企业所生产的数据会越来越多,其规模可能达到数百 TB 甚至 PB 级别,传统的解决方案是通过 OLTP 型数据库处理在线联机交易业务,通过 ETL 工具将数据同步到 OLAP 型数据库进行数据分析,这种处理方案存在存储成本高、实时性差等多方面的问题。TiDB 在 4.0 版本中引入列存储引擎 TiFlash 结合行存储引擎 TiKV 构建真正的 HTAP 数据库,在增加少量存储成本的情况下,可以在同一个系统中做联机交易处理、实时数据分析,极大地节省企业的成本。

数据汇聚、二次加工处理的场景

  • 当前绝大部分企业的业务数据都分散在不同的系统中,没有一个统一的汇总,随着业务的发展,企业的决策层需要了解整个公司的业务状况以便及时做出决策,故需要将分散在各个系统的数据汇聚在同一个系统并进行二次加工处理生成 T+0 或 T+1 的报表。传统常见的解决方案是采用 ETL + Hadoop 来完成,但 Hadoop 体系太复杂,运维、存储成本太高无法满足用户的需求。与 Hadoop 相比,TiDB 就简单得多,业务通过 ETL 工具或者 TiDB 的同步工具将数据同步到 TiDB,在 TiDB 中可通过 SQL 直接生成报表。

四、TiDB数据库与MySQL数据库的兼容性

TiDB 高度兼容 MySQL 5.7 协议、MySQL 5.7 常用的功能及语法。

TiDB 不支持 MySQL 复制协议,但提供了专用工具用于与 MySQL 复制数据:

  • 从 MySQL 复制:TiDB Data Migration (DM) 是将 MySQL/MariaDB 数据迁移到 TiDB 的工具,可用于增量数据的复制。
  • 向 MySQL 复制:TiCDC 是一款通过拉取 TiKV 变更日志实现的 TiDB 增量数据同步工具,可通过 MySQL sink 将 TiDB 增量数据复制到 MySQL。

相关文章:

TiDB数据库从入门到精通系列之二:TiDB数据库的简介

TiDB数据库从入门到精通系列之二&#xff1a;TiDB数据库的简介 一、TiDB数据库的简介二、五大核心特性三、四大核心应用场景四、TiDB数据库与MySQL数据库的兼容性 一、TiDB数据库的简介 TiDB是开源分布式关系型数据库&#xff0c;是一款同时支持在线事务处理与在线分析处理 (H…...

opencv视频截取每一帧并保存为图片python代码CV2实现练习

当涉及到视频处理时&#xff0c;Python中的OpenCV库提供了强大的功能&#xff0c;可以方便地从视频中截取每一帧并将其保存为图片。这是一个很有趣的练习&#xff0c;可以让你更深入地了解图像处理和多媒体操作。 使用OpenCV库&#xff0c;你可以轻松地读取视频文件&#xff0…...

虹科方案 | 汽车总线协议转换解决方案(二)

上期说到&#xff0c;虹科的PCAN-LIN网关在CAN、LIN总线转换方面有显著的作用&#xff0c;尤其是为BMS电池通信的测试提供了优秀的解决方案。假如您感兴趣&#xff0c;可以点击文末相关链接进行回顾&#xff01; 而今天&#xff0c;虹科将继续给大家带来Router系列在各个领域的…...

[Android] 通过JNI 让 JAVA 调用 android native 接口

前言&#xff1a; JNI (java native interface) 是一个库&#xff0c;可以让 java 代码和其他语言互动&#xff0c;比如 java 通过 JNI 调用融合了 jni库的 c/c 代码&#xff0c;注意&#xff0c;这里要求 c/c代码中必须通过链接 jni 库并按照 JNI 规范定义一套可供 JAVA 调用…...

MySQL高可用MHA

目录 前言 一、概述 二、配置免密、组从复制 三、MHA配置 四、测试 总结 前言 MySQL高可用管理工具&#xff08;MHA&#xff0c;Master High Availability&#xff09;是一个用于自动管理MySQL主从复制的工具&#xff0c;它可以提供高可用性和自动故障转移。MHA由原版的MHA工具…...

DoIP学习笔记系列:(五)“安全认证”的.dll从何而来?

文章目录 1. “安全认证”的.dll从何而来?1.1 .dll文件base1.2 增加客户需求算法传送门 DoIP学习笔记系列:导航篇 1. “安全认证”的.dll从何而来? 无论是用CANoe还是VFlash,亦或是编辑cdd文件,都需要加载一个与$27服务相关的.dll(Windows的动态库文件),这个文件是从哪…...

205、仿真-51单片机直流数字电流表多档位切换Proteus仿真设计(程序+Proteus仿真+原理图+流程图+元器件清单+配套资料等)

毕设帮助、开题指导、技术解答(有偿)见文未 目录 一、硬件设计 二、设计功能 三、Proteus仿真图 四、原理图 五、程序源码 资料包括&#xff1a; 方案选择 单片机的选择 方案一&#xff1a;STM32系列单片机控制&#xff0c;该型号单片机为LQFP44封装&#xff0c;内部资源…...

服务器如何防止cc攻击

对于搭载网站运行的服务器来说&#xff0c;cc攻击应该并不陌生&#xff0c;特别是cc攻击的攻击门槛非常低&#xff0c;有个代理IP工具&#xff0c;有个cc攻击软件就可以轻易对任何网站发起攻击&#xff0c;那么服务器如何防止cc攻击?请看下面的介绍。 服务器如何防止cc攻击&a…...

解读注解@Value占位符替换过程

之前写过一篇关于介绍Spring占位符替换原理的博客&#xff0c;传送门 &#xff1a;Spring的占位符是怎么工作的 在这篇文章基础上&#xff0c;再介绍一下Value替换原理&#xff0c;两篇文章有一定的相关性。 继续以上一篇的工程为例&#xff0c;项目结构一样&#xff0c;这里就…...

浅谈5G技术会给视频监控行业带来的一些变革情况

5G是第五代移动通信技术&#xff0c;能够提供更高的带宽和更快的传输速度&#xff0c;这将为视频技术的发展带来大量机会。随着5G技术的逐步普及与商用&#xff0c;人们将能够享受到更加流畅的高清视频体验&#xff0c;并且5G技术还拥有更低的延迟和更高的网络容量。这些优势不…...

Java常用API---快速达到Java工作水准系列(1)

目录 1.集合 2.包装类 3.日期处理以及格式化 4.字符串处理类 5.数组 5.BigDecimal 6.Math 1.集合 毋庸置疑&#xff0c;集合在实际项目的使用概率几乎是百分之百。无论是用于数据存储和管理、去重和查找亦或是数据检索和遍历&#xff0c;都离不开集合的使用。任何一个项…...

Python中使用隧道爬虫ip提升数据爬取效率

作为专业爬虫程序员&#xff0c;我们经常面临需要爬取大量数据的任务。然而&#xff0c;有些网站可能会对频繁的请求进行限制&#xff0c;这就需要我们使用隧道爬虫ip来绕过这些限制&#xff0c;提高数据爬取效率。本文将分享如何在Python中使用隧道爬虫ip实现API请求与响应的技…...

深入源码分析kubernetes informer机制(四)DeltaFIFO

[阅读指南] 这是该系列第四篇 基于kubernetes 1.27 stage版本 为了方便阅读&#xff0c;后续所有代码均省略了错误处理及与关注逻辑无关的部分。 文章目录 client-go中的存储结构DeltaFIFOdelta索引 keyqueue push操作delta push 去重 queue pop操作 总结 client-go中的存储结构…...

UI设计师个人工作总结范文

UI设计师个人工作总结范文篇一 感受到了领导们“海纳百川”的胸襟&#xff0c;感受到了作为广告人“不经历风雨&#xff0c;怎能见彩虹”的豪气&#xff0c;也体会到了重庆广告从业人员作为拓荒者的艰难和坚定(就目前国内广告业而言&#xff0c;我认为重庆广告业尚在发展阶段并…...

explicit关键字 和 static成员

explicit关键字 和 static成员 1、explicit 关键字2、static成员&#xff08;静态成员变量属于类的&#xff08;只有所属这个类的对象才能修改&#xff09;&#xff0c;不同于全局变量&#xff08;任何对象都能修改&#xff09;&#xff09;2.1 定义和性质2.2 静态成员的使用场…...

安装Linux操作系统CentOS 6详细图文步骤

为满足业务对Linux操作系统部署的要求&#xff0c;本文档主要提供CentOS 6操作系统的最小化安装和基本配置, 安装本系统建议最少1GB内存和2GB磁盘空间。 1、 使用光盘或者挂载ISO镜像&#xff0c;在出现如下图形界面时选择【Install or upgrade an existing system】并按Ent…...

新增守护进程管理、支持添加MySQL远程数据库,支持PHP版本切换,1Panel开源面板v1.5.0发布

2023年8月14日&#xff0c;现代化、开源的Linux服务器运维管理面板1Panel正式发布v1.5.0版本。 在这个版本中&#xff0c;1Panel新增了守护进程管理功能&#xff1b;支持添加MySQL远程数据库&#xff1b;支持添加FTP/S和WebDAV的SFTP服务&#xff1b;支持PHP版本切换。此外&am…...

十、接口(1)

本章概要 抽象类和方法接口创建 默认方法多继承接口中的静态方法Instrument 作为接口 接口和抽象类提供了一种将接口与实现分离的更加结构化的方法。 这种机制在编程语言中不常见&#xff0c;例如 C 只对这种概念有间接的支持。而在 Java 中存在这些关键字&#xff0c;说明…...

percentile_approx 聚合函数

返回组内 expr 的百分位近似值。 此函数是 approx_percentile 聚合函数的同义词。 语法 percentile_approx ( [ALL | DISTINCT ] expr, percentile [, accuracy] ) [FILTER ( WHERE cond ) ] 还可以使用 OVER 子句将此函数作为窗口函数调用。 参数 expr&#xff1a;数值表达…...

面试热题(全排列)

给定一个不含重复数字的整数数组 nums &#xff0c;返回其 所有可能的全排列 。可以 按任意顺序 返回答案。 输入&#xff1a;nums [1,2,3] 输出&#xff1a;[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 先在这里说明一下排列和组合的区别? 组合&#xff1a;是指从一…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...