数据结构单链表
单链表
1 链表的概念及结构
概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链
接次序实现的 。
在我们开始讲链表之前,我们是写了顺序表,顺序表就是类似一个数组的东西,它的存放是连续的,优点有很多,比如支持我们随机访问,连续存放,命中率高,区别于单链表我们可以用类似数组的下标进行访问,这大大的提高我们的效率,但是也有缺点,空间不够就要需要扩容,扩容存在消耗的,头部或者中间位置的插入删除,需要挪动,挪动数据也是存在消耗的。避免频繁扩容,一次一般都是按倍数扩容,可能存在空间扩容。
链表的优点:
按需申请空间,不用释放空间。
头部或者中间位置的插入和删除,不需要挪动数据。
不存在空间浪费。
链表的缺陷:
每一个数据,都要存放一个指针去链表后面节点的地址。
不支持随机访问。
链表的结构
typedef int SLNodedataType;
typedef struct SList
{SLNodedataType data;struct SList* next;}SLNode;
这个就是我们单链表的基本代码,我们来用图更加清清楚的表示一下它完整的样子。
这就我们基本的逻辑结构,它前一个的next是存放后面的地址的,这样就能找到我们下一个节点。
单链表使用的时候相比和顺序表比较的话,它的使用不会浪费空间,我们需要一个节点就可以开辟一个节点出来供我们使用。但是它存储就不是连续的了。
那我们现在开始写代码来实现单链表。
单链表
首先我们要创建一个结构体。
typedef int SLNodedataType;
typedef struct SList
{SLNodedataType data;struct SList* next;}SLNode;
接下来我们首先要打印我们的单链表
在这之前我们应该创建节点,创捷节点很简单,就是按照我们上面的图的前一个存放后面的地址。
//创建节点SLNode* n1 = (SLNode*)malloc(sizeof(SLNode));assert(n1);SLNode* n2 = (SLNode*)malloc(sizeof(SLNode));assert(n2);SLNode* n3 = (SLNode*)malloc(sizeof(SLNode));assert(n3);SLNode* n4 = (SLNode*)malloc(sizeof(SLNode));assert(n4);n1->data = 1;n2->data = 2;n3->data = 3;n4->data = 4;n1->next = n2;n2->next = n3;n3->next = n4;n4->next = NULL;
那下面就是我们的打印单链表。
void SListPrint(SLNode* plist)
{SLNode* cur = plist;while (cur != NULL){printf("%d->", cur->data);cur = cur->next;}printf("NULL");printf("\n");}
我们来测试一下看看效果。
可以看到我们的单链表也是成功的打印,那接下来就是要写出我们的尾插函数。
写之前我们先来分析分析,首先尾插一个节点进去,那我们是不是要有一个这样的节点,竟然这样就可以写一个创造节点的函数。就叫他CreateSListNode
SLNode* CreateSListNode(SLNodedataType x)
{SLNode* newnode = (SLNode*)malloc(sizeof(SLNode));newnode->data = x;newnode->next = NULL;return newnode;
}
写完这个那我们写一个尾插函数,尾插的时候我们要想一想要传什么地址过去,如果是有数据的话其实我们传一级地址就行,但是如果是空的话,就得传二级,因为我们要改变plist的位置。但是也其实是相当于头插,没节点的时候,总不能在空指针后面插入。那我们写一个 吧。
void SListPushBcak(SLNode** plist, SLNodedataType x)
{SLNode*newnode=CreateSListNode(x);assert(plist);if (*plist == NULL){plist = newnode;}else{SLNode* tail = *plist;while (tail->next != NULL){tail = tail->next;}tail->next = newnode;}}
看一下我们编译的结果
最后也是成功的尾插进去,那尾插之后就应该要写一个尾删。
写尾删的时候,我们要先考虑怎么找到最后,这和尾插一样,遍历一遍找到最后一个,然后free掉就行了。
代码
void SListPopBack(SLNode** plist)
{SLNode* tail = *plist;SLNode* prev = NULL;while (tail->next != NULL){prev = tail;tail = tail->next;}free(tail);prev->next = NULL;
}
这其实就是用了一个双指针的方法找最后一个的前一个,但是我们还需要注意链表不能为空,空了怎么删除啊。所以改进一下。
void SListPopBack(SLNode** plist)
{assert(plist);assert(*plist);SLNode* tail = *plist;SLNode* prev = NULL;while (tail->next != NULL){prev = tail;tail = tail->next;}free(tail);prev->next = NULL;
}
void test1()
{//创建节点SLNode* n1 = (SLNode*)malloc(sizeof(SLNode));assert(n1);SLNode* n2 = (SLNode*)malloc(sizeof(SLNode));assert(n2);SLNode* n3 = (SLNode*)malloc(sizeof(SLNode));assert(n3);SLNode* n4 = (SLNode*)malloc(sizeof(SLNode));assert(n4);n1->data = 1;n2->data = 2;n3->data = 3;n4->data = 4;n1->next = n2;n2->next = n3;n3->next = n4;n4->next = NULL;SListPrint(n1);SListPushBcak(&n1, 5);SListPushBcak(&n1, 6);SListPushBcak(&n1, 7);SListPushBcak(&n1, 8);SListPrint(n1);SListPopBack(&n1);SListPopBack(&n1);SListPrint(n1);
}
不过其实我们也可以不用双指针的办法。
那也整一个玩玩吧
void SListPopBack(SLNode** plist)
{assert(plist);assert(*plist);SLNode* tail = *plist;while (tail->next->next != NULL){tail = tail->next;}free(tail->next);tail->next = NULL;
其实道理是一样的,就是找下下一个的节点是不是为空。
尾插写好就是头插,来吧展示。
void SListPushFront(SLNode** plist, SLNodedataType x)
{assert(plist);SLNode* newnode = CreateSListNode(x);if (*plist == NULL){*plist = newnode;}else{newnode->next = *plist;*plist = newnode;}}
其实想明白也不难,接下来就是头删。
void test1()
{//创建节点SLNode* n1 = (SLNode*)malloc(sizeof(SLNode));assert(n1);SLNode* n2 = (SLNode*)malloc(sizeof(SLNode));assert(n2);SLNode* n3 = (SLNode*)malloc(sizeof(SLNode));assert(n3);SLNode* n4 = (SLNode*)malloc(sizeof(SLNode));assert(n4);n1->data = 1;n2->data = 2;n3->data = 3;n4->data = 4;n1->next = n2;n2->next = n3;n3->next = n4;n4->next = NULL;SListPrint(n1);SListPushBcak(&n1, 5);SListPushBcak(&n1, 6);SListPushBcak(&n1, 7);SListPushBcak(&n1, 8);SListPrint(n1);SListPopBack(&n1);SListPopBack(&n1);SListPrint(n1);SListPushFront(&n1, 111);SListPushFront(&n1, 222);SListPrint(n1);SListPopFront(&n1);SListPopFront(&n1);SListPopFront(&n1);SListPrint(n1);}
void SListPopFront(SLNode** plist)
{assert(plist);assert(*plist);SLNode* cur = (*plist)->next;free(*plist);*plist = cur;
}
我们在写一个查找功能的代码
SLNode* SLFind(SLNode* plist, SLNodedataType x);
查找我们可以返回这个节点,这样就能和其他功能一起用,比如修改数据,或者在任意位置插入和删除。
SLNode* SLFind(SLNode* plist, SLNodedataType x)
{SLNode* pos = plist;while (pos->data == x){return pos;pos = pos->next;}
}
这是只考虑找到的情况下,但是难免有时候会出现找不到的情况,让我们来看一下吧,写一个找不到情况下和找到情况下的代码。‘
SLNode* SLFind(SLNode* plist, SLNodedataType x)
{SLNode* pos = plist;while (pos != NULL){if (pos->data == x){return pos;}pos = pos->next;}return NULL;
}
然后我们可以写一个函数来判断有没有找到。
SLNode*pos = SLFind(n1, 111);if (pos != NULL){printf("找到了\n");}else{printf("找不到\n");}
我们看完整代码。
void test1()
{//创建节点SLNode* n1 = (SLNode*)malloc(sizeof(SLNode));assert(n1);SLNode* n2 = (SLNode*)malloc(sizeof(SLNode));assert(n2);SLNode* n3 = (SLNode*)malloc(sizeof(SLNode));assert(n3);SLNode* n4 = (SLNode*)malloc(sizeof(SLNode));assert(n4);n1->data = 1;n2->data = 2;n3->data = 3;n4->data = 4;n1->next = n2;n2->next = n3;n3->next = n4;n4->next = NULL;SListPrint(n1);SListPushBcak(&n1, 5);SListPushBcak(&n1, 6);SListPushBcak(&n1, 7);SListPushBcak(&n1, 8);SListPrint(n1);SListPopBack(&n1);SListPopBack(&n1);SListPrint(n1);SListPushFront(&n1, 111);SListPushFront(&n1, 222);SListPrint(n1);SListPopFront(&n1);SListPopFront(&n1);SListPopFront(&n1);SListPrint(n1);SLNode*pos = SLFind(n1, 111);if (pos != NULL){printf("找到了\n");}else{printf("找不到\n");}}
我们如果要找111发现没有找到,因为头删的时候改掉,其实我们竟然这样写了就可以写一个修改的代码,这里就不演示了。
接下来我们要写的是在任意位置删除和插入节点。
void SListPushInsert(SLNode** plist, SLNode* pos, SLNodedataType x)
{assert(plist);assert(pos);SLNode* newnode = CreateSListNode(x);if (pos == *plist){SListPushFront(plist, x);}else{SLNode* prev = *plist;while (prev->next != pos){prev = prev->next;}prev->next = newnode;newnode->next = pos;}
}
测试代码
void test1()
{//创建节点SLNode* n1 = (SLNode*)malloc(sizeof(SLNode));assert(n1);SLNode* n2 = (SLNode*)malloc(sizeof(SLNode));assert(n2);SLNode* n3 = (SLNode*)malloc(sizeof(SLNode));assert(n3);SLNode* n4 = (SLNode*)malloc(sizeof(SLNode));assert(n4);n1->data = 1;n2->data = 2;n3->data = 3;n4->data = 4;n1->next = n2;n2->next = n3;n3->next = n4;n4->next = NULL;SListPrint(n1);SListPushBcak(&n1, 5);SListPushBcak(&n1, 6);SListPushBcak(&n1, 7);SListPushBcak(&n1, 8);SListPrint(n1);SListPopBack(&n1);SListPopBack(&n1);SListPrint(n1);SListPushFront(&n1, 111);SListPushFront(&n1, 222);SListPrint(n1);SListPopFront(&n1);SListPopFront(&n1);SListPopFront(&n1);SListPrint(n1);SLNode*pos = SLFind(n1,3);if (pos != NULL){printf("找到了\n");SListPushInsert(&n1, pos, 10086);}else{printf("找不到\n");}SListPrint(n1);
}
在任意位置删除
void SListPopInsert(SLNode** plist, SLNode* pos)
{assert(plist);assert(*plist);assert(pos);if (*plist == pos){SListPopFront(plist);}else{SLNode* prev = *plist;while (prev->next != pos){prev = prev->next;}prev->next = pos->next;free(pos);}
}
其实还有可以在任意位置后删除,这样更快,就不用找那个位置前一个位置了,这里就不展示了,
完整代码
#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>
#include<assert.h>
#include<stdlib.h>typedef int SLNodedataType;
typedef struct SList
{SLNodedataType data;struct SList* next;}SLNode;void SListPrint(SLNode* plist);SLNode* CreateSListNode(SLNodedataType x);void SListPushBcak(SLNode** plist, SLNodedataType x);void SListPopBack(SLNode** plist);void SListPushFront(SLNode** plist, SLNodedataType x);void SListPopFront(SLNode** plist);SLNode* SLFind(SLNode* plist, SLNodedataType x);void SListPushInsert(SLNode** plist, SLNode* pos, SLNodedataType x);void SListPopInsert(SLNode** plist, SLNode* pos);
#include"SList.h"void SListPrint(SLNode* plist)
{SLNode* cur = plist;while (cur != NULL){printf("%d->", cur->data);cur = cur->next;}printf("NULL");printf("\n");}SLNode* CreateSListNode(SLNodedataType x)
{SLNode* newnode = (SLNode*)malloc(sizeof(SLNode));newnode->data = x;newnode->next = NULL;return newnode;
}void SListPushBcak(SLNode** plist, SLNodedataType x)
{SLNode*newnode=CreateSListNode(x);assert(plist);if (*plist == NULL){plist = newnode;}else{SLNode* tail = *plist;while (tail->next != NULL){tail = tail->next;}tail->next = newnode;}}void SListPopBack(SLNode** plist)
{assert(plist);assert(*plist);SLNode* tail = *plist;SLNode* prev = NULL;while (tail->next != NULL){prev = tail;tail = tail->next;}free(tail);prev->next = NULL;
}
//
//void SListPopBack(SLNode** plist)
//{
// assert(plist);
// assert(*plist);
// SLNode* tail = *plist;
//
// while (tail->next->next != NULL)
// {
//
// tail = tail->next;
// }
// free(tail->next);
// tail->next = NULL;
//
//}void SListPushFront(SLNode** plist, SLNodedataType x)
{assert(plist);SLNode* newnode = CreateSListNode(x);if (*plist == NULL){*plist = newnode;}else{newnode->next = *plist;*plist = newnode;}}void SListPopFront(SLNode** plist)
{assert(plist);assert(*plist);SLNode* cur = (*plist)->next;free(*plist);*plist = cur;
}//SLNode* SLFind(SLNode* plist, SLNodedataType x)
//{
// SLNode* pos = plist;
// while (pos->data == x)
// {
// return pos;
// pos = pos->next;
// }
//}SLNode* SLFind(SLNode* plist, SLNodedataType x)
{SLNode* pos = plist;while (pos != NULL){if (pos->data == x){return pos;}pos = pos->next;}return NULL;
}void SListPushInsert(SLNode** plist, SLNode* pos, SLNodedataType x)
{assert(plist);assert(pos);SLNode* newnode = CreateSListNode(x);if (pos == *plist){SListPushFront(plist, x);}else{SLNode* prev = *plist;while (prev->next != pos){prev = prev->next;}prev->next = newnode;newnode->next = pos;}
}void SListPopInsert(SLNode** plist, SLNode* pos)
{assert(plist);assert(*plist);assert(pos);if (*plist == pos){SListPopFront(plist);}else{SLNode* prev = *plist;while (prev->next != pos){prev = prev->next;}prev->next = pos->next;free(pos);}
}
测试主函数的也发一下吧,大家可以不用放一起测试,有点看不过来。
#include"SList.h"void test1()
{//创建节点SLNode* n1 = (SLNode*)malloc(sizeof(SLNode));assert(n1);SLNode* n2 = (SLNode*)malloc(sizeof(SLNode));assert(n2);SLNode* n3 = (SLNode*)malloc(sizeof(SLNode));assert(n3);SLNode* n4 = (SLNode*)malloc(sizeof(SLNode));assert(n4);n1->data = 1;n2->data = 2;n3->data = 3;n4->data = 4;n1->next = n2;n2->next = n3;n3->next = n4;n4->next = NULL;SListPrint(n1);SListPushBcak(&n1, 5);SListPushBcak(&n1, 6);SListPushBcak(&n1, 7);SListPushBcak(&n1, 8);SListPrint(n1);SListPopBack(&n1);SListPopBack(&n1);SListPrint(n1);SListPushFront(&n1, 111);SListPushFront(&n1, 222);SListPrint(n1);SListPopFront(&n1);SListPopFront(&n1);SListPopFront(&n1);SListPrint(n1);SLNode*pos = SLFind(n1,3);if (pos != NULL){printf("找到了\n");SListPushInsert(&n1, pos, 10086);}else{printf("找不到\n");}SListPrint(n1);
}
int main()
{test1();return 0;
}
今天的分享就到这里,我们下次再见。
相关文章:

数据结构单链表
单链表 1 链表的概念及结构 概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链 接次序实现的 。 在我们开始讲链表之前,我们是写了顺序表,顺序表就是类似一个数组的东西࿰…...

自定义WEB框架结合Jenkins实现全自动测试
自定义WEB框架结合Jenkins实现全自动测试 allure生成 allure生成 1.allure–纯命令运行 -固定的–稍微记住对应的单词即可。2 安装,2个步骤: 1.下载allure包,然后配置环境变量。 https://github.com/allure-framework/allure2/releases/tag/2.22.4 2.在…...

PHP加密与安全的最佳实践
PHP加密与安全的最佳实践 概述 在当今信息时代,数据安全是非常重要的。对于开发人员而言,掌握加密和安全的最佳实践是必不可少的。PHP作为一种常用的后端开发语言,提供了许多功能强大且易于使用的加密和安全性相关函数和类。本文将介绍一些P…...

SQL Server数据库无法连接
问题如下: 原因:sql server服务器未开启 解决方法:以管理员身份打开cmd,输入:net start mssqlserver。...

videojs 播放视频
背景:在项目中使用第三方插件videojs进行播放视频,点击事件更改播放的数据源。 一、视频相关理论 (一)、背景 网络流媒体的呈现形式分为两种:直播点播 (二)、流媒体的3种协议 分类:HTTPHLSRTMP定义:基于HTTP的流媒体…...
vue强制刷新变量
在前端开发中,我们经常需要变量的值实时响应到界面上。Vue就是一个非常强大的前端框架,它的数据绑定能够非常好地实现变量与界面的同步更新。但是有时候,我们需要强制刷新某个变量的值,以便界面能及时地反映出它的变化。本文将介绍…...
[QCA6174]QCA6174 5G WiFi DFS处理逻辑分析及雷达误检率高优化规避
DFS认证信息 WIFI DFS测试要求 Master设备需要测试的项目 4.6.2.1 Channel Availability Check 信道可用性检查 定义其作为雷达脉冲检测机制,当雷达脉冲出现时所占用的信道需要能被设备检测到已经被占用。当相关信道未被占用时,这些信道被称为Avaliable Channel可用信道 …...

预防SQL漏洞注入和规避网络攻击
前言: 虽然近些年SQL注入已经被各类的安全开发框架规避了绝大部分,但SQL注入作为一种最原始的攻击手段之一,破坏力仍然十分强大,因为它直捣黄龙数据中心。所以未雨绸缪,各位不可不重视。 预防SQL注入方法措施: 服务器…...

《Go 语言第一课》课程学习笔记(一)
配好环境:选择一种最适合你的 Go 安装方法 选择 Go 版本 一般情况下,建议采用最新版本。因为 Go 团队发布的 Go 语言稳定版本的平均质量一直是很高的,少有影响使用的重大 bug。可以根据不同实际项目需要或开源社区的情况使用不同的版本。 有…...

网络安全 Day29-运维安全项目-iptables防火墙
iptables防火墙 1. 防火墙概述2. 防火墙2.1 防火墙种类及使用说明2.2 必须熟悉的名词2.3 iptables 执行过程※※※※※2.4 表与链※※※※※2.4.1 简介2.4.2 每个表说明2.4.2.1 filter表 :star::star::star::star::star:2.4.2.2 nat表 2.5 环境准备及命令2.6 案例01:…...
SQL 复习 03
函数与关键字 用法说明round(x, n)四舍五入,x为浮点数,n为保留的位数ceil(x)向上取整floor(x)向下取整truncate(x, n)截断x,n为保留的位,该位之后的数值置零,位数表示示例:321.123,其中小数点前…...
出现 sudo: docker: command not found 的解决方法
目录 1. 问题所示2. 原理分析3. 解决方法3.1 未成功安装引起3.2 环境变量引起1. 问题所示 安装了docker,但是执行docker命令的时候,提示该问题: ubuntu@10-41-104-1:~$ sudo docker ps -a sudo: docker: command not foundubuntu@10-41-104-1:~$ sudo apt-get install doc…...

FastApi-1-结合sql 增/查demo
目录 FastAPI学习记录项目结构部分接口/代码展示感受全部代码 FastAPI学习记录 fastapi已经学习有一段时间,今天抽时间简单整理下。 官网介绍: FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,使用 Py…...
Spring学习笔记3
使用注解开发: Component 组件开发相当于 Value(“xxx”)可以对属性进行赋值 package pojo;import org.springframework.beans.factory.annotation.Value; import org.springframework.stereotype.Component; //等价于<bean id"user" class"po…...

springboot艰难版本升级之路!! springboot 2.3.x版本升级到2.7.x版本
文章目录 1.缘起1.1 升级到版本2.7.12启动失败,而且没有报错信息1.2 application-dev.yml 配置加载问题1.3 openfeign依赖问题汇总1.4 datasource报错1.5 MySQL驱动升级1.6 循环依赖报错1.7 跨域错误临时总结1.缘起 由于服务需要搭建链路追踪, 需要把springboot版本升级到2.7.1…...
Codeforces 1856E2 复杂度分析 + DP
题意 传送门 Codeforces 1856E2 PermuTree (hard version) 题解 可以独立考虑每一个固定的 p l c a ( u , v ) plca(u,v) plca(u,v) 对答案的贡献。可以观察到,对于 p p p 的每一棵子树,其所有节点在最优情况下仅有 a p < a v a_p < a_v ap…...

Windows - UWP - 为UWP应用创建桌面快捷方式
Windows - UWP - 为UWP应用创建桌面快捷方式 前言 这是一个较为简单的方式,不需要过多的命令行。 How 首先Win R -> shell:AppsFolder -> 回车, 这将显示电脑上的已安装应用(Win32 & UWP): 找到想要创建…...

了解Web DDoS海啸攻击的4个维度
我们都知道近年来网络攻击的数量和频率急剧上升,针对Web应用程序的DDoS海啸攻击就是其中增长非常迅速的一个种类。过去常见的HTTP/S洪水攻击正在大范围的转变为更难对付的Web DDoS海啸攻击,每个人都应该提前做好被攻击的准备并采取适当的保护措施。 哪些…...

【数学建模】逻辑回归算法(Logistic Resgression)
逻辑回归算法 简介逻辑回归与条件概率绘制sigmoid函数 简介 逻辑回归算法是一种简单但功能强大的二元线性分类算法。需要注意的是,尽管"逻辑回归"名字带有“回归”二字,但逻辑回归是一个分类算法,而不是回归算法。 我认为ÿ…...
Hadoop HA集群两个NameNode都是standby或者主NameNode是standby,从NameNode是active的情况集锦
文章目录 背景架构HDFS HA配置错误原因解决方案方案一方案二方案三(首先查看自己各参数文件是否配置出错) 后记补充failovertransitionToActive 常用端口号及配置文件常用端口号hadoop3.xhadoop2.x 常用配置文件 这里说一下配置Hadoop HA集群可能出现的两…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...