分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测
目录
- 分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果
基本描述
1.MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测,运行环境Matlab2023b及以上;
2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。
程序设计
- 完整程序和数据获取方式:私信博主回复** MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测**。
%% 优化算法参数设置
SearchAgents_no = 8; % 数量
Max_iteration = 5; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [1e-3,10 1e-4]; % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1]; % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));
best_hd = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图reluLayer("Name", "relu_1") % Relu 激活层convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],32个特征图reluLayer("Name", "relu_2")]; % Relu 激活层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层flattenLayer("Name", "flatten") % 网络铺平层bilstmLayer(best_hd, "Name", "bilstm", "OutputMode","last") % BiLSTM层fullyConnectedLayer(num_class, "Name", "fc") % 全连接层softmaxLayer("Name", "softmax") % softmax激活层classificationLayer("Name", "classification")]; % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 1000'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过800次训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测,运行环境Matlab2023b及以上…...

MyBatis动态SQL:打造灵活可变的数据库操作
目录 if标签trim标签where标签set标签foreach标签 动态SQL就是根据不同的条件或需求动态地生成查询语句,比如动态搜索条件、动态表或列名、动态排序等。 if标签 在我们填写一些信息时,有些信息是必填字段,有的则是非必填的,这些…...

nginx代理请求到内网不同服务器
需求:之前用的是frp做的内网穿透,但是每次电脑断电重启,路由或者端口会冲突,现在使用汉土云盒替换frp。 需要把公网ip映射到任意一台内网服务器上,然后在这台内网服务器上用Nginx做代理即可访问内网其它服务器…...

【C# 基础精讲】文件读取和写入
文件读取和写入是计算机程序中常见的操作,用于从文件中读取数据或将数据写入文件。在C#中,使用System.IO命名空间中的类来进行文件读写操作。本文将详细介绍如何在C#中进行文件读取和写入,包括读取文本文件、写入文本文件、读取二进制文件和写…...
设计模式——经典单例
0、核心要素 // 构造、析构函数私有化(一个进程只允许一个对象存在) // 对象私有化、静态化(因为接口静态函数) // 对象调用接口静态化(因为静态函数脱离了类对象,可以直接调用) 一、懒汉 唯…...
【HarmonyOS】鸿蒙应用获取华为帐号手机号码步骤(API7及以下)
【写在前面】 本文主要介绍使用API7及以下版本开发HarmonyOS应用时,通过华为帐号SDK和云侧接口获取手机号码的主要开发步骤,注意:开发过程中集成的华为帐号SDK仅支持API7及以下版本的HarmonyOS应用。 【前提准备】 1、HarmonyOS应用已申请获…...
webpack相关面试
运行 npm run xxx 的时候发生了什么? npm run xxx的时候,首先会去项目的package.json文件里找scripts 里找对应的xxx,然后执行 xxx的命令 npm i 的时候,npm 读到该配置后,就将该文件软链接到 ./node_modules/.bin 目录…...

如何使用ChatGPT创建个性化的健身锻炼计划
ChatGPT广泛应用于各个行业,健身也不例外。 ChatGPT 在健身领域的一个常用案例是创建个性化的锻炼计划。 在要求 ChatGPT 创建锻炼计划时,简单地输入自己的目标和当前的健身水平是一个很好的开始。完成此操作后,你还可以使用其他提示和措施来…...

人工智能与云计算实训室建设方案
一、 人工智能与云计算系统概述 人工智能(Artificial Intelligence,简称AI)是一种模拟人类智能的科学和工程,通过使用计算机系统来模拟、扩展和增强人类的智能能力。人工智能涉及多个领域,包括机器学习、深度学习、自然…...

使用 Apache Kafka 和 Go 将数据引入 OpenSearch
需要编写自定义集成层来满足数据管道中的特定要求?了解如何使用 Go 通过 Kafka 和 OpenSearch 实现此目的。 可扩展的数据摄取是OpenSearch等大规模分布式搜索和分析引擎的一个关键方面。构建实时数据摄取管道的方法之一是使用Apache Kafka。它是一个开源事件流平台…...

2.SpringMvc中Model、ModelMap和ModelAndView使用详解
1.前言 最近SSM框架开发web项目,用得比较火热。spring-MVC肯定用过,在请求处理方法可出现和返回的参数类型中,最重要就是Model和ModelAndView了,对于MVC框架,控制器Controller执行业务逻辑,用于产生模型数据…...
Spark repartition和coalesce的区别
repartition只是coalesce接口中shuffle为true的实现。不经过 shuffle,也就是coaleasce shuffle为false,是无法增加RDD的分区数的,比如你源RDD 100个分区,想要变成200个分区,只能使用repartition,也就是coal…...

微服务最佳实践,零改造实现 Spring Cloud Apache Dubbo 互通
作者:孙彩荣 很遗憾,这不是一篇关于中间件理论或原理讲解的文章,没有高深晦涩的工作原理分析,文后也没有令人惊叹的工程数字统计。本文以实际项目和代码为示例,一步一步演示如何以最低成本实现 Apache Dubbo 体系与 S…...

leetcode 力扣刷题 两数/三数/四数之和 哈希表和双指针解题
两数/三数/四数之和 题目合集 哈希表求解1. 两数之和454. 四数相加Ⅱ 双指针求解15.三数之和18. 四数之和 这个博客是关于:找出数组中几个元素,使其之和等于题意给出的target 这一类题目的,但是各个题之间又有些差异,使得需要用不…...

(搜索) 剑指 Offer 12. 矩阵中的路径 ——【Leetcode每日一题】
❓剑指 Offer 12. 矩阵中的路径 难度:中等 给定一个 m * n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构…...

构建高可用的去中心化微服务集群架构指南
随着云计算、大数据和物联网的快速发展,企业对于可扩展的、高性能的微服务架构的需求也日益增长。传统的集中式架构已经不能满足这些需求,因此出现了去中心化的微服务集群架构。本文将介绍如何构建高可用的去中心化微服务集群架构,以满足企业…...
Sui主网升级至V1.7.1版本
Sui主网现已升级至V1.7.1版本,此升级包含了多项修复和优化。升级要点如下所示: #12915 协议版本提升至20版本。 在Sui框架中新增Kiosk Extensions API和一个新的sui::kiosk_extension模块。 您可以使用该API构建自定义的Kiosk应用程序,以…...
自然语言处理从入门到应用——LangChain:索引(Indexes)-[基础知识]
分类目录:《自然语言处理从入门到应用》总目录 索引(Indexes)是指为了使LLM与文档更好地进行交互而对其进行结构化的方式。在链中,索引最常用于“检索”步骤中,该步骤指的是根据用户的查询返回最相关的文档:…...

k8s集群监控方案--node-exporter+prometheus+grafana
目录 前置条件 一、下载yaml文件 二、部署yaml各个组件 2.1 node-exporter.yaml 2.2 Prometheus 2.3 grafana 2.4访问测试 三、grafana初始化 3.1加载数据源 3.2导入模板 四、helm方式部署 前置条件 安装好k8s集群(几个节点都可以,本人为了方便实验k8s集…...

nginx反向代理流程
一、nginx反向代理流程 反向代理:使用代理服务器来接受internet上的连接请求,然后将请求转发给内部网络中的上游服务器,并将上游服务器得到的结果返回给请求连接的客户端,代理服务器对外表现就是一个web服务器。Nginx就经常拿来做…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...