如何使用ChatGPT创建个性化的健身锻炼计划
ChatGPT广泛应用于各个行业,健身也不例外。
ChatGPT 在健身领域的一个常用案例是创建个性化的锻炼计划。
在要求 ChatGPT 创建锻炼计划时,简单地输入自己的目标和当前的健身水平是一个很好的开始。完成此操作后,你还可以使用其他提示和措施来创建更全面的锻炼计划。[1]
我需要你为一名 25 岁的男子制定一个锻炼计划,他想通过锻炼来增加肌肉。
有没有其他偏好要提前说明,比如更喜欢在家锻炼还是健身房锻炼?根据自己的日程安排,可以投入多少时间进行锻炼?喜欢团体锻炼还是更喜欢单独训练?
除了计划中的锻炼项目之外,你还可以向ChatGPT提供自己偏好的其他运动项目信息,比如喜欢打羽毛球,每周至少会打几次羽毛球等信息也加到ChatGPT的提示中。
综合以上信息,就可以创建更加个性化的健身计划了。
使用长提示
下面是一个长提示的示例:“小英是一名 16 岁的女孩,她想在高中羽毛球比赛时提高运动成绩。同时,她想增加肌肉,因为体型大是她运动的优势,所以她想加入一些增肌练习。然而,她只有一个杠铃和一些杠铃片。请为她准备一个以增肌为重点的锻炼计划,让她每周训练 3 次。”
基于休息和恢复来改变锻炼计划也是权宜之计。如果你之前希望每周训练 3 次,ChatGPT 可能会把休息日安排进锻炼计划。
因此,你可以指示 ChatGPT 重新安排休息日或自己根据实际重新安排,同时遵循 AI 的锻炼建议。
增加锻炼强度
如果你已经习惯了当前的锻炼强度,你可以将之前的锻炼计划复制并粘贴回 ChatGPT 中,并要求 AI 创建更高强度的版本。然后,你将通过 ChatGPT 获得全新的锻炼方案。
ChatGPT 是一个很棒的工具,可以做任何事情,包括创建很棒的锻炼计划。然而,它不能完全取代健身专业人士。在某些情况下,即使你尝试在提示中进行解释,人工智能也可能无法充分理解上下文,所以请谨慎使用并注意结合专业人士意见。[2]
参考资料:
[1]https://www.94c.cc/info/chatgpt-creates-personalized-fitness-workout-plans.html
[2]https://www.makeuseof.com/fitness-trainers-chatgpt-create-personalized-workout-plans/
相关文章:

如何使用ChatGPT创建个性化的健身锻炼计划
ChatGPT广泛应用于各个行业,健身也不例外。 ChatGPT 在健身领域的一个常用案例是创建个性化的锻炼计划。 在要求 ChatGPT 创建锻炼计划时,简单地输入自己的目标和当前的健身水平是一个很好的开始。完成此操作后,你还可以使用其他提示和措施来…...

人工智能与云计算实训室建设方案
一、 人工智能与云计算系统概述 人工智能(Artificial Intelligence,简称AI)是一种模拟人类智能的科学和工程,通过使用计算机系统来模拟、扩展和增强人类的智能能力。人工智能涉及多个领域,包括机器学习、深度学习、自然…...

使用 Apache Kafka 和 Go 将数据引入 OpenSearch
需要编写自定义集成层来满足数据管道中的特定要求?了解如何使用 Go 通过 Kafka 和 OpenSearch 实现此目的。 可扩展的数据摄取是OpenSearch等大规模分布式搜索和分析引擎的一个关键方面。构建实时数据摄取管道的方法之一是使用Apache Kafka。它是一个开源事件流平台…...

2.SpringMvc中Model、ModelMap和ModelAndView使用详解
1.前言 最近SSM框架开发web项目,用得比较火热。spring-MVC肯定用过,在请求处理方法可出现和返回的参数类型中,最重要就是Model和ModelAndView了,对于MVC框架,控制器Controller执行业务逻辑,用于产生模型数据…...
Spark repartition和coalesce的区别
repartition只是coalesce接口中shuffle为true的实现。不经过 shuffle,也就是coaleasce shuffle为false,是无法增加RDD的分区数的,比如你源RDD 100个分区,想要变成200个分区,只能使用repartition,也就是coal…...

微服务最佳实践,零改造实现 Spring Cloud Apache Dubbo 互通
作者:孙彩荣 很遗憾,这不是一篇关于中间件理论或原理讲解的文章,没有高深晦涩的工作原理分析,文后也没有令人惊叹的工程数字统计。本文以实际项目和代码为示例,一步一步演示如何以最低成本实现 Apache Dubbo 体系与 S…...

leetcode 力扣刷题 两数/三数/四数之和 哈希表和双指针解题
两数/三数/四数之和 题目合集 哈希表求解1. 两数之和454. 四数相加Ⅱ 双指针求解15.三数之和18. 四数之和 这个博客是关于:找出数组中几个元素,使其之和等于题意给出的target 这一类题目的,但是各个题之间又有些差异,使得需要用不…...

(搜索) 剑指 Offer 12. 矩阵中的路径 ——【Leetcode每日一题】
❓剑指 Offer 12. 矩阵中的路径 难度:中等 给定一个 m * n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构…...

构建高可用的去中心化微服务集群架构指南
随着云计算、大数据和物联网的快速发展,企业对于可扩展的、高性能的微服务架构的需求也日益增长。传统的集中式架构已经不能满足这些需求,因此出现了去中心化的微服务集群架构。本文将介绍如何构建高可用的去中心化微服务集群架构,以满足企业…...
Sui主网升级至V1.7.1版本
Sui主网现已升级至V1.7.1版本,此升级包含了多项修复和优化。升级要点如下所示: #12915 协议版本提升至20版本。 在Sui框架中新增Kiosk Extensions API和一个新的sui::kiosk_extension模块。 您可以使用该API构建自定义的Kiosk应用程序,以…...
自然语言处理从入门到应用——LangChain:索引(Indexes)-[基础知识]
分类目录:《自然语言处理从入门到应用》总目录 索引(Indexes)是指为了使LLM与文档更好地进行交互而对其进行结构化的方式。在链中,索引最常用于“检索”步骤中,该步骤指的是根据用户的查询返回最相关的文档:…...

k8s集群监控方案--node-exporter+prometheus+grafana
目录 前置条件 一、下载yaml文件 二、部署yaml各个组件 2.1 node-exporter.yaml 2.2 Prometheus 2.3 grafana 2.4访问测试 三、grafana初始化 3.1加载数据源 3.2导入模板 四、helm方式部署 前置条件 安装好k8s集群(几个节点都可以,本人为了方便实验k8s集…...

nginx反向代理流程
一、nginx反向代理流程 反向代理:使用代理服务器来接受internet上的连接请求,然后将请求转发给内部网络中的上游服务器,并将上游服务器得到的结果返回给请求连接的客户端,代理服务器对外表现就是一个web服务器。Nginx就经常拿来做…...
Java“牵手”根据店铺ID获取淘宝店铺所有商品数据方法,淘宝API实现批量店铺商品数据抓取示例
淘宝天猫商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取淘宝整店所有商品详情页面评价内容数据,您可以通过开放平台的接口或者直接访问淘宝商城的网页来获取店铺所有商品详情信息内的评论数据…...
从0开始yolov8模型目标检测训练
从0开始yolov8模型目标检测训练 1 大环境 首先有大环境,即已经准备好了python、nvidia驱动、cuda、cudnn等。 2 yolov8的虚拟环境 2.1 创建虚拟环境 conda create -n yolov8 python3.102.2 激活虚拟环境 注意:激活虚拟环境的时候,需要清…...
设计模式-抽象工厂模式
抽象工厂模式:该模式是对工厂模式的拓展,因为工厂模式中创建的产品都需要继承自同一个父类或接口,创建的产品类型相同,无法创建其他类型产品,所以抽象工厂模式对其进行拓展,使其可以创建其他类型的产品。 …...

如何用Apipost实现sign签名?
我们平常对外的接口都会用到sign签名,对不同的用户提供不同的apikey ,这样可以提高接口请求的安全性,避免被人抓包后乱请求。 如何用Apipost实现sign签名? 可以在Apipost中通过预执行脚本调用内置的JS库去实现预执行脚本是在发送请求之前自…...

Hive底层数据存储格式
前言 在大数据领域,Hive是一种常用的数据仓库工具,用于管理和处理大规模数据集。Hive底层支持多种数据存储格式,这些格式对于数据存储、查询性能和压缩效率等方面有不同的优缺点。本文将介绍Hive底层的三种主要数据存储格式:文本文件格式、Parquet格式和ORC格式。 一、三…...

双向-->带头-->循环链表
目录 一、双向带头循环链表概述 1.什么是双向带头循环链表 2.双向带头循环链表的优势 3.双向带头循环链表简图 二、双向带头循环链表的增删查改图解及代码实现 1.双向带头循环链表的头插 2.双向带头循环链表的尾插 3.双向带头循环链表的头删 4.双向带头循环链表的尾删…...
Opencv4基于C++基础入门笔记:OpenCV环境配置搭建
文章目录: 一:软件安装 二:配置环境(配置完之后重启一下软件) 1.配置电脑系统环境变量 vs2012及其以下 vs2014及其以上 2.配置VS软件环境变量 vs2012及其以下 vs2014及其以上 三:测试 vs2012及其…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...