单例模式的理论与实践
本文实践代码仓库:https://github.com/goSilver/my_practice
文章目录
- 一、定义
- 二、作用
- 三、实现
- 3.1 饿汉式
- 3.2 懒汉式
- 3.3 双重检查
- 3.4 静态内部类
- 3.5 枚举
- 四、总结
- 4.1 单例存在哪些问题?
- 4.2 单例有什么替代解决方案?
一、定义
单例模式是一种创建型设计模式,它确保一个类只有一个实例,并提供一个全局访问点以访问该实例。单例模式常用于需要共享资源或控制某个唯一资源的场景,例如数据库连接、线程池等。
二、作用
单例模式可以确保在整个应用程序中只有一个对象实例存在,从而方便地共享资源、管理状态或控制某些操作。
从业务概念上,有些数据在系统中只应该保存一份,就比较适合设计为单例类。比如,系统的配置信息类。除此之外,我们还可以使用单例解决资源访问冲突的问题。
三、实现
要实现一个单例,我们需要关注的点无外乎下面几个:
- 构造函数需要是 private 访问权限的,这样才能避免外部通过 new 创建实例;
- 考虑对象创建时的线程安全问题;
- 考虑是否支持延迟加载;
- 考虑 getInstance() 性能是否高(是否加锁)。
3.1 饿汉式
饿汉式的实现方式比较简单。在类加载的时候,instance 静态实例就已经创建并初始化好了,所以,instance 实例的创建过程是线程安全的。不过,这样的实现方式不支持延迟加载(在真正用到IdGenerator 的时候,再创建实例)。
如果实例资源初始化时间长、占用资源多,那么最好是采用饿汉式,将耗时的初始化操作提前到程序启动时就完成,避免程序在运行中发生崩溃。
public class Hungry {private final AtomicLong id = new AtomicLong(0);/*** 类加载时就初始化*/private static final Hungry instance = new Hungry();private Hungry() {}public static Hungry getInstance() {return instance;}public long getId() {return id.incrementAndGet();}
}
3.2 懒汉式
懒汉式相对于饿汉式的优势是支持延迟加载。这种实现方式会导致频繁加锁、释放锁,以及并发度低等问题,频繁的调用会产生性能瓶颈。
public class Lazy {private final AtomicLong id = new AtomicLong(0);private static Lazy instance;private Lazy() {}/*** 获取实例的方法被synchronized关键字修饰* @return 实例*/public static synchronized Lazy getInstance() {if (instance == null) {instance = new Lazy();}return instance;}public long getId() {return id.incrementAndGet();}
}
3.3 双重检查
双重检测实现方式既支持延迟加载、又支持高并发的单例实现方式。**只要 instance 被创建之后,再调用 getInstance() 函数都不会进入到加锁逻辑中。**所以,这种实现方式解决了懒汉式并发度低的问题。
public class DoubleCheck {private final AtomicLong id = new AtomicLong(0);/*** volatile关键字修饰* CPU 指令重排序可能导致在 IdGenerator 类的对象被关键字 new 创建并赋值给 instance 之后,还没来得及初始化(执行构造函数中的代码逻辑),就被另一个线程使用了。* 这样,另一个线程就使用了一个没有完整初始化的 IdGenerator 类的对象。* 要解决这个问题,我们只需要给 instance 成员变量添加 volatile 关键字来禁止指令重排序即可。*/private static volatile DoubleCheck instance;private DoubleCheck() {}/*** 双重检查* @return 实例*/public static DoubleCheck getInstance() {if (instance == null) {// 只有第一次才会执行到这里,此处为类级别锁synchronized (DoubleCheck.class) {if (instance == null) {instance = new DoubleCheck();}}}return instance;}public long getId() {return id.incrementAndGet();}
}
3.4 静态内部类
利用 Java 的静态内部类来实现单例。这种实现方式,既支持延迟加载,也支持高并发,实现起来也比双重检测简单。
public class StaticInnerClass {private AtomicLong id = new AtomicLong(0);private StaticInnerClass() {}/*** 静态内部类* SingletonHolder 是一个静态内部类,当外部类 IdGenerator 被加载的时候,并不会创建 SingletonHolder 实例对象。* 只有当调用 getInstance() 方法时,SingletonHolder 才会被加载,这个时候才会创建 instance。* instance 的唯一性、创建过程的线程安全性,都由 JVM 来保证。所以,这种实现方法既保证了线程安全,又能做到延迟加载。*/private static class SingletonHolder {private static final StaticInnerClass instance = new StaticInnerClass();}public static StaticInnerClass getInstance() {return SingletonHolder.instance;}public long getId() {return id.incrementAndGet();}
}
3.5 枚举
最简单的实现方式,基于枚举类型的单例实现。这种实现方式通过 Java 枚举类型本身的特性,保证了实例创建的线程安全性和实例的唯一性。
public enum Enumm {/*** 实例*/INSTANCE;private final AtomicLong id = new AtomicLong(0);public long getId() {return id.incrementAndGet();}
}
四、总结
4.1 单例存在哪些问题?
- 单例对 OOP 特性的支持不友好
一旦你选择将某个类设计成到单例类,也就意味着放弃了继承和多态这两个强有力的面向对象特性,也就相当于损失了可以应对未来需求变化的扩展性。
- 单例会隐藏类之间的依赖关系
通过构造函数、参数传递等方式声明的类之间的依赖关系,我们通过查看函数的定义,就能很容易识别出来。但是,单例类不需要显示创建、不需要依赖参数传递,在函数中直接调用就可以了。如果代码比较复杂,这种调用关系就会非常隐蔽。在阅读代码的时候,我们就需要仔细查看每个函数的代码实现,才能知道这个类到底依赖了哪些单例类。
- 单例对代码的扩展性不友好
单例类只能有一个对象实例。如果未来某一天,我们需要在代码中创建两个实例或多个实例,那就要对代码有比较大的改动。
- 单例对代码的可测试性不友好
单例模式的使用会影响到代码的可测试性。如果单例类依赖比较重的外部资源,比如 DB,我们在写单元测试的时候,希望能通过 mock 的方式将它替换掉。而单例类这种硬编码式的使用方式,导致无法实现 mock 替换。
- 单例不支持有参数的构造函数
单例不支持有参数的构造函数,比如我们创建一个连接池的单例对象,我们没法通过参数来指定连接池的大小。
4.2 单例有什么替代解决方案?
为了保证全局唯一,除了使用单例,我们还可以用静态方法来实现。不过,静态方法这种实现思路,并不能解决我们之前提到的问题。如果要完全解决这些问题,我们可能要从根上,寻找其他方式来实现全局唯一类了。比如,通过工厂模式、IOC 容器(比如 Spring IOC 容器)来保证,由程序员自己来保证(自己在编写代码的时候自己保证不要创建两个类对象)。
有人把单例当作反模式,主张杜绝在项目中使用。我个人觉得这有点极端。模式没有对错,关键看你怎么用。如果单例类并没有后续扩展的需求,并且不依赖外部系统,那设计成单例类就没有太大问题。对于一些全局的类,我们在其他地方 new 的话,还要在类之间传来传去,不如直接做成单例类,使用起来简洁方便。
相关文章:
单例模式的理论与实践
本文实践代码仓库:https://github.com/goSilver/my_practice 文章目录 一、定义二、作用三、实现3.1 饿汉式3.2 懒汉式3.3 双重检查3.4 静态内部类3.5 枚举 四、总结4.1 单例存在哪些问题?4.2 单例有什么替代解决方案? 一、定义 单例模式是一…...
深入了解MongoDB:灵活的文档型数据库与应用案例
什么是MongoDB ? MongoDB 是由C语言编写的,是一个基于分布式文件存储的开源数据库系统。 在高负载的情况下,添加更多的节点,可以保证服务器性能。 MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB 将数据存储为一个…...

【HarmonyOS北向开发】-01 HarmonyOS概述
飞书原文链接-【HarmonyOS北向开发】-01 HarmonyOS概述https://fvcs2dhq8qs.feishu.cn/docx/TDf2d2KMaoPSUUxnvg2cASDdnCe?fromfrom_copylink...

Node.js入门
安装 前往官网下载即可:https://nodejs.org/zh-cn 安装之后检查是否成功并查看版本,winr --> 输入cmd --> 确认 --> 进入命令提示符窗口 --> 输入 node -v --> 出现以下就代表成功了,这也是node的版本号 什么是Node.js Nod…...

指针、数组、sizeof、strlen相关知识与练习题目
目录 前提回顾🔍: 关于一维数组🤮: 关于二维数组😀: sizeof与strlen🐕: sizeof🏀: strlen🐓: 相关练习📚:…...

分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测,运行环境Matlab2023b及以上…...

MyBatis动态SQL:打造灵活可变的数据库操作
目录 if标签trim标签where标签set标签foreach标签 动态SQL就是根据不同的条件或需求动态地生成查询语句,比如动态搜索条件、动态表或列名、动态排序等。 if标签 在我们填写一些信息时,有些信息是必填字段,有的则是非必填的,这些…...

nginx代理请求到内网不同服务器
需求:之前用的是frp做的内网穿透,但是每次电脑断电重启,路由或者端口会冲突,现在使用汉土云盒替换frp。 需要把公网ip映射到任意一台内网服务器上,然后在这台内网服务器上用Nginx做代理即可访问内网其它服务器…...

【C# 基础精讲】文件读取和写入
文件读取和写入是计算机程序中常见的操作,用于从文件中读取数据或将数据写入文件。在C#中,使用System.IO命名空间中的类来进行文件读写操作。本文将详细介绍如何在C#中进行文件读取和写入,包括读取文本文件、写入文本文件、读取二进制文件和写…...
设计模式——经典单例
0、核心要素 // 构造、析构函数私有化(一个进程只允许一个对象存在) // 对象私有化、静态化(因为接口静态函数) // 对象调用接口静态化(因为静态函数脱离了类对象,可以直接调用) 一、懒汉 唯…...
【HarmonyOS】鸿蒙应用获取华为帐号手机号码步骤(API7及以下)
【写在前面】 本文主要介绍使用API7及以下版本开发HarmonyOS应用时,通过华为帐号SDK和云侧接口获取手机号码的主要开发步骤,注意:开发过程中集成的华为帐号SDK仅支持API7及以下版本的HarmonyOS应用。 【前提准备】 1、HarmonyOS应用已申请获…...
webpack相关面试
运行 npm run xxx 的时候发生了什么? npm run xxx的时候,首先会去项目的package.json文件里找scripts 里找对应的xxx,然后执行 xxx的命令 npm i 的时候,npm 读到该配置后,就将该文件软链接到 ./node_modules/.bin 目录…...

如何使用ChatGPT创建个性化的健身锻炼计划
ChatGPT广泛应用于各个行业,健身也不例外。 ChatGPT 在健身领域的一个常用案例是创建个性化的锻炼计划。 在要求 ChatGPT 创建锻炼计划时,简单地输入自己的目标和当前的健身水平是一个很好的开始。完成此操作后,你还可以使用其他提示和措施来…...

人工智能与云计算实训室建设方案
一、 人工智能与云计算系统概述 人工智能(Artificial Intelligence,简称AI)是一种模拟人类智能的科学和工程,通过使用计算机系统来模拟、扩展和增强人类的智能能力。人工智能涉及多个领域,包括机器学习、深度学习、自然…...

使用 Apache Kafka 和 Go 将数据引入 OpenSearch
需要编写自定义集成层来满足数据管道中的特定要求?了解如何使用 Go 通过 Kafka 和 OpenSearch 实现此目的。 可扩展的数据摄取是OpenSearch等大规模分布式搜索和分析引擎的一个关键方面。构建实时数据摄取管道的方法之一是使用Apache Kafka。它是一个开源事件流平台…...

2.SpringMvc中Model、ModelMap和ModelAndView使用详解
1.前言 最近SSM框架开发web项目,用得比较火热。spring-MVC肯定用过,在请求处理方法可出现和返回的参数类型中,最重要就是Model和ModelAndView了,对于MVC框架,控制器Controller执行业务逻辑,用于产生模型数据…...
Spark repartition和coalesce的区别
repartition只是coalesce接口中shuffle为true的实现。不经过 shuffle,也就是coaleasce shuffle为false,是无法增加RDD的分区数的,比如你源RDD 100个分区,想要变成200个分区,只能使用repartition,也就是coal…...

微服务最佳实践,零改造实现 Spring Cloud Apache Dubbo 互通
作者:孙彩荣 很遗憾,这不是一篇关于中间件理论或原理讲解的文章,没有高深晦涩的工作原理分析,文后也没有令人惊叹的工程数字统计。本文以实际项目和代码为示例,一步一步演示如何以最低成本实现 Apache Dubbo 体系与 S…...

leetcode 力扣刷题 两数/三数/四数之和 哈希表和双指针解题
两数/三数/四数之和 题目合集 哈希表求解1. 两数之和454. 四数相加Ⅱ 双指针求解15.三数之和18. 四数之和 这个博客是关于:找出数组中几个元素,使其之和等于题意给出的target 这一类题目的,但是各个题之间又有些差异,使得需要用不…...

(搜索) 剑指 Offer 12. 矩阵中的路径 ——【Leetcode每日一题】
❓剑指 Offer 12. 矩阵中的路径 难度:中等 给定一个 m * n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...