当前位置: 首页 > news >正文

原码、补码、反码

一、前置概念

计算机底层存储数据时使用的是二进制数字,但是计算机在存储一个数字时并不是直接存储该数字对应的二进制数字,而是存储该数字对应二进制数字的补码。所以接下来我们需要来了解一下原码、反码和补码

那么再了解原码、反码、补码之前,我们要了解机器数和真值的概念:

1) 机器数

一个数在计算机的存储形式是二进制数,我们称这些二进制数为机器数,机器数是有符号,在计算机中用机器数的最高位存放符号位,0表示正数,1表示负数

2) 真值

因为机器数带有符号位,所以机器数的形式值不等于其真实表示的值(真值),以机器数1000 0001为例,其真正表示的值(首位为符号位)为-1,而形式值(首位就是代表1)为129;因此将带符号的机器数的真正表示的值称为机器数的真值

二、原码、反码、补码介绍

1) 原码

原码的表示与机器数真值表示的一样,即用第一位表示符号,其余位表示数值。也就是

正数:就是它对应的二进制数。
负数:将绝对值对应的二进制最左边位变为1。

例如的十进制的的正负1,用8位二进制的原码表示如下:

+1= 原:[ 0000 0001 ]-1= 原:[ 1000 0001 ]

2) 反码

正数 : 和原码相同。
负数 : 在其原码的基础上,符号位不变,其余各位取反。

+1= 原: [ 0000 0001 ] = 反:[ 0000 0001 ]-1= 原:[ 1000 0001 ] = 反:[ 1111 1110 ]

3) 补码

正数 : 补码是其原码本身。
负数 : 补码是在其原码的基础上,符号位不变,其余各位取反后加1(即在反码的基础上加1)。

+1= 原: [ 0000 0001 ] = 反:[ 0000 0001 ] = 补:[ 0000 0001 ]-1= 原:[ 1000 0001 ] = 反:[ 1111 1110 ] = 补:[ 1111 1111 ]

三、 数据在计算机中的存储形式

计算机实际只存储补码,所以原码转换为补码的过程,也可以理解为数据存储到计算机内存中的过程:

https://pic4.zhimg.com/80/v2-526897c7f151205d79a9ec7006486c63_1440w.webp

在原、反、补码中,正数的表示是一模一样的,而负数的表示是不相同的,所以对于负数的补码来说,我们是不能直接用进制转换将其转换为十进制数值的,因为这样是得不到计算机真正存储的十进制数的,所以应该将其转换为原码后,再将转换得到的原码进行进制转换为十进制数(机器数包含符号位

四、为何使用原码、反码、补码

我们上面说过,原码、反码、补码的表示对于正数来说都是一样的,而对于负数来说,三种码的表示确是完全不同的,那大家是否会有个疑问:如果原码才是我们人类可以识别并用于直接计算的表示方式,**那为什么还会有反码和补码?**计算机直接存储原码不就完事了?

在解决这些问题前,我们先来了解计算机的底层概念,我们人脑可以很轻松的知道机器数的第一位是符号位,但对于计算机基础电路设计来说判别第一位是符号位是非常难和复杂的事情,为了让计算机底层设计更加简单,人们开始探索将符号位参与运算,并且采用只保留加法的方法,我们知道减去一个数,等于加上这个数的负数,即:1-1 = 1 + (-1) = 0,这样让计算机运算就更加简单了,并且也让符号位参与到运算中去

五、原码、补码、反码演进的过程

提醒:前提是已经完全掌握上面的原码、反码、补码介绍

1) 使用原码运算

计算十进制表达式:1-1 = 0

1 - 1 = 1 + (-1)
= 原:[ 0000 0001 ] + 原:[ 1000 0001 ]
= 原:[ 1000 0010 ] = -2

结论:如果用原码表示,让符号位也参与计算,对于减法来说,结果是不正确的这也是计算机内部在存储数据时不使用原码的原因,为了解决这一问题,出现了反码。

2) 使用反码运算

计算十进制表达式:1-1 = 0

1 - 1 = 1 + (-1)
= 原:[ 0000 0001 ] + 原:[ 1000 0001 ]
= 反:[ 0000 0001 ] + 反:[ 1111 1110 ]
= 反:[ 1111 1111 ] = 原: [ 1000 0000 ] = -0

结论:通过计算我们发现用反码计算减法,**结果的真值部分是正确的。**而唯一的问题出现在"0"这个特殊的数值上,虽然人们理解上+0和-0是一样的,但是0带符号是没有任何意义的,而且会有[0000 0000]原和[1000 0000]原两个编码表示0。为了解决这一问题,出现了补码。

3) 使用补码运算

1 - 1 = 1 + (-1)

= 原:[ 0000 0001 ] + 原:[ 1000 0001 ]
= 补:[ 0000 0001 ] + 补:[ 1111 1111 ]
= 补: [ 0000 0000 ] = 原: [ 0000 0000 ] = 0

结论:这样0用[0000 0000]表示,而以前出现问题的-0则不存在了,而且人们还发现可以用[1000 0000]表示-128,-128的推算过程如下:

(-1) + (-127) = -128
= 原:[1000 0001] + 原:[ 1111 1111 ]
= 补:[ 1111 1111 ] + 补:[ 1000 0001 ]
= 补:[ 1000 0000 ]

注意:因为实际上是使用以前的-0的补码来表示-128,所以-128并没有原码和反码表示,只要补码是[1000 0000],其十进制数值就为-128。

4) 演进总结:

因为补码能多存储一个**-128**,而且在计算机底层中存储的是补码,所以在计算机中一个8位的二进制数的存储范围是用补码表示的**[-128,127],而不是用原码或反码表示的[-127,127]。这也可以解释为什么计算机中一个字节的取值范围是[-128,127]**。

最后也能够回答我们开始提出的问题了,原码、反码、补码的使用,是人们为了让符号位能参与运算并让计算机底层运算更加简单而设计出来的数据存储表示方式

六、总结(牢记)

  1. 二进制的最高位是符号位:0表示正数,1表示负数(把 1 平放就是负号 ‘-’)。

  2. 正数的原码反码补码都一样,三码合一。

  3. 负数的反码 = 它的原码符号位不变,其它位取反。

  4. 负数的补码 = 它的反码 + 1, 负数的反码 = 负数的补码 - 1 。

  5. 0 的反码、补码都是 0 。

  6. Java没有无符号数,换言之Java中的数都是有符号的。

  7. 在计算机运算的时候都是以 “补码” 的方式来运算的。

  8. 当我们看运算结果的时候,要看它的原码(重点)。

相关文章:

原码、补码、反码

一、前置概念 计算机底层存储数据时使用的是二进制数字,但是计算机在存储一个数字时并不是直接存储该数字对应的二进制数字,而是存储该数字对应二进制数字的补码。所以接下来我们需要来了解一下原码、反码和补码。 那么再了解原码、反码、补码之前&…...

煤矿调度IP语音对讲广播模块一键求助对讲矿用调度通信系统SIP语音对讲求助终端

硬件接口描述 SV-2101VP/ SV-2103VP系列网络音频模块,所有外部连接采用端子,电源采用2.0mm的端子,网络采用标准RJ45连接器,其他都是1.25mm的连接器。 端口类型定义 P ———— 电源 AI ———— 模拟输入(在这里是音…...

堆 和 优先级队列(超详细讲解,就怕你学不会)

优先级队列 一、堆的概念特性二、堆的创建1、向下调整算法2、向下调整建堆3、向下调整建堆的时间复杂度 三、堆的插入1、向上调整算法实现插入2、插入创建堆的时间复杂度 三、堆的删除四、Java集合中的优先级队列1、PriorityQueue 接口概述及模拟实现2、如何创建大根堆&#xf…...

AIGC绘画:基于Stable Diffusion进行AI绘图

文章目录 AIGC深度学习模型绘画系统stable diffusion简介stable diffusion应用现状在线网站云端部署本地部署Stable Diffusion AIGC深度学习模型绘画系统 stable diffusion简介 Stable Diffusion是2022年发布的深度学习文本到图像生成模型,它主要用于根据文本的描述…...

python实现对Android系统手机亮度的调节

要实现对手机亮度的调节,需要使用Android系统的API。以下是一个简单的Python代码示例,演示如何使用ADB工具和Python脚本来控制Android设备的亮度: from adb.client import Client as AdbClient import os# 连接设备 client AdbClient(host&…...

《论文阅读14》FAST-LIO

一、论文 研究领域:激光雷达惯性测距框架论文:FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter IEEE Robotics and Automation Letters, 2021 香港大学火星实验室 论文链接论文github 二、论文概…...

Kotlin CompletableDeferred 入门

在 Kotlin 中,CompletableDeferred 是一个用于异步编程的类,它提供了一种实现异步操作和等待操作结果的方式。 CompletableDeferred 是 Deferred 接口的具体实现之一,可以用于表示一个可能会在将来完成的操作。它提供了以下主要功能&#xf…...

stm32g070的PD0/PD2 PA8和PB15

目前在用STM32G070做项目,其中PD2TIMER3去模拟PWM,PD0用作按键检测,测试发现PD0低电平检测没有问题,高电平检测不到,电路图如下图所示: 用万用表测试电平,高电平1.0V左右,首先怀疑硬…...

【数据结构】 链表简介与单链表的实现

文章目录 ArrayList的缺陷链表链表的概念及结构链表的分类单向或者双向带头或者不带头循环或者非循环 单链表的实现创建单链表遍历链表得到单链表的长度查找是否包含关键字头插法尾插法任意位置插入删除第一次出现关键字为key的节点删除所有值为key的节点回收链表 总结 ArrayLi…...

【Leetcode】98. 验证二叉搜索树

一、题目 1、题目描述 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。示例1: 输入:root = …...

ViewFs And Federation On HDFS

序言 ViewFs 是在Federation的基础上提出的,用于通过一个HDFS路径来访问多个NameSpace,同时与ViewFs搭配的技术是client-side mount table(这个就是具体的规则配置信息可以放置在core.xml中,也可以放置在mountTable.xml中). 总的来说ViewFs的其实就是一个中间层,用于去连接不…...

每日一学——无线基础知识

无线局域网(Wireless Local Area Network,简称 WLAN)是一种使用无线通信技术连接多个无线终端设备的局域网。它通常基于无线电波传输数据,并使用无线接入点(Access Point,简称 AP)来连接无线设备…...

【腾讯云 Cloud Studio 实战训练营】在线 IDE 编写 canvas 转换黑白风格头像

关于 Cloud Studio Cloud Studio 是基于浏览器的集成式开发环境(IDE),为开发者提供了一个永不间断的云端工作站。用户在使用Cloud Studio 时无需安装,随时随地打开浏览器就能在线编程。 Cloud Studio 作为在线IDE,包含代码高亮、自动补全、Gi…...

【Hystrix技术指南】(7)故障切换的运作流程原理分析(含源码)

背景介绍 目前对于一些非核心操作,如增减库存后保存操作日志发送异步消息时(具体业务流程),一旦出现MQ服务异常时,会导致接口响应超时,因此可以考虑对非核心操作引入服务降级、服务隔离。 Hystrix说明 官方…...

Springboot 整合MQ实现延时队列入门

延时队列 添加依赖配置文件队列TTL代码架构图交换机、队列、绑定配置文件代码生产者代码消费者代码延时队列优化添加普通队列配置代码生产者发送消息是进行设置消息的ttl 通过MQ 插件实现延时队列代码架构图配置交换机生产者代码消费者代码测试发送 添加依赖 <!-- rabbitMQ …...

前端基础(Vue框架)

前言&#xff1a;前端开发框架——Vue框架学习。 准备工作&#xff1a;添加Vue devtools扩展工具 具体可查看下面的这篇博客 添加vue devtools扩展工具添加后F12不显示Vue图标_MRJJ_9的博客-CSDN博客 Vue官方学习文档 Vue.js - 渐进式 JavaScript 框架 | Vue.js 目录 MV…...

【实用插件】ArcGIS for AutoCAD插件分享下载

ArcGIS包含一系列功能&#xff0c;其中ArcGIS for AutoCAD一个免费的可下载的AutoCAD插件&#xff0c;它可简化将CAD和GIS数据整合在一起的过程提供互操作性。 ArcGIS for AutoCAD互操作性平台将连接AutoCAD和 ArcGIS&#xff0c;以增强使用地理环境设计CAD工程图时的用户体验…...

GaussDB数据库SQL系列-子查询

目录 一、前言 二、GaussDB SQL子查询表达式 1、EXISTS/NOT EXISTS 2、IN/NOT IN 3、ANY/SOME 4、ALL 三、GaussDB SQL子查询实验示例 1、创建实验表 2、EXISTS/NOT EXISTS示例 3、IN/NOT IN 示例 4、ANY/SOME 示例 5、ALL示例 四、注意事项及建议 五、小结 一、…...

Kafka 什么速度那么快

批量发送消息 Kafka 采用了批量发送消息的方式&#xff0c;通过将多条消息按照分区进行分组&#xff0c;然后每次发送一个消息集合&#xff0c;看似很平常的一个手段&#xff0c;其实它大大提升了 Kafka 的吞吐量。 消息压缩 消息压缩的目的是为了进一步减少网络传输带宽。而…...

环形链表笔记(自用)

环形链表 不管怎么样slow最多走半圈了&#xff0c; 快慢指针slow走一步&#xff0c;fast走两步最合适&#xff0c;因为假设fast和slow相差n每一次他们前进&#xff0c;就会相差n-1步&#xff0c;这样他们一定会相遇&#xff0c;如果是环形链表的话。 代码 /*** Definition for…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...