Python Opencv实践 - 图像高斯滤波(高斯模糊)
import cv2 as cv
import numpy as np
import matplotlib.pyplot as pltimg = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
rows,cols,channels = img.shape
print(rows,cols,channels)#为图像添加高斯噪声
#使用np.random.normal(loc=0.0, scale=1.0, size=None)
# loc: 高斯分布中心点,分布的均值
# scale: 高斯分布的宽度,分布的标准差
# size:维度。如果给定维度是(m,n,k)则从分布中抽取m*n*k个样本
#参考资料:https://blog.csdn.net/wzy628810/article/details/103807829
# https://blog.csdn.net/sinat_29957455/article/details/123977298
def AddGaussianNoise(image, mean=0, var=0.005):image = np.array(image/255, dtype=float) #将像素值归一noise = np.random.normal(mean, var ** 0.5, image.shape) #产生高斯噪声out = image + noise #直接将归一化的图片与噪声相加if out.min() < 0:low_clip = -1.else:low_clip = 0.out = np.clip(out, low_clip, 1.0)out = np.uint8(out*255)return outimg_gaussian_noise = img.copy()
gauss_mean = 0
gauss_sigma = 0.003
#增加高斯噪声到图像
img_gaussian_noise = AddGaussianNoise(img_gaussian_noise, gauss_mean, gauss_sigma)#高斯滤波(高斯模糊)
#cv.GaussianBlur(src, ksize, sigmaX, sigmaY, borderType)
#src: 输入图像
#ksize: kernel大小,高斯卷积和大小。注意卷积核的宽度和高度可以不同,但必须为正数且为奇数,也可以为零。
#sigmaX/Y: X和Y方向上的高斯标准差
#参考资料:https://blog.csdn.net/weixin_52012241/article/details/122284713
img_gaussian_blur_origin = cv.GaussianBlur(img, (3,3), 0)
img_gaussian_blur_noise = cv.GaussianBlur(img_gaussian_noise, (13,13), 0.006)#显示图像
fig,axes = plt.subplots(nrows=2, ncols=2, figsize=(10,10), dpi=100)
axes[0][0].imshow(img[:,:,::-1])
axes[0][0].set_title("Original")
axes[0][1].imshow(img_gaussian_blur_origin[:,:,::-1])
axes[0][1].set_title("Original Gaussian Blurred")
axes[1][0].imshow(img_gaussian_noise[:,:,::-1])
axes[1][0].set_title("Add Gaussian Noise")
axes[1][1].imshow(img_gaussian_blur_noise[:,:,::-1])
axes[1][1].set_title("Gaussian Noise Blurred")
相关文章:

Python Opencv实践 - 图像高斯滤波(高斯模糊)
import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols,channels img.shape print(rows,cols,channels)#为图像添加高斯噪声 #使用np.random.normal(loc0.0, scale1.0…...
使用 Qt 生成 Word 和 PDF 文档的详细教程
系列文章目录 文章目录 系列文章目录前言一、安装 Qt二、生成 Word 文档三、生成 PDF 文档四、运行代码并查看结果五、自定义文档内容总结 前言 Qt 是一个跨平台的应用程序开发框架,除了用于创建图形界面应用程序外,还可以用来生成 Word 和 PDF 文档。本…...

ssm+vue校园美食交流系统源码
ssmvue校园美食交流系统源码和论文026 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 随着现在网络的快速发展,网上管理系统也逐渐快速发展起来,网上管理模式很快融入到了许多商…...

电力系统基础知识(一)—电力系统概述
1、电压 也称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B点所做的功,电压的方向规定为从高电位指向低电位。其单位为伏特(V,简称伏),常用单位还有千伏(kV)、毫伏(mV)、微伏(uV…...

spring(15) SpringBoot启动过程
目录 一、过程简介二、过程流程图三、源码分析1、运行 SpringApplication.run() 方法2、确定应用程序类型3、加载所有的初始化器4、加载所有的监听器5、设置程序运行的主类6、开启计时器7、将 java.awt.headless 设置为 true8、获取并启用监听器9、设置应用程序参数10、准备环境…...

耕地单目标语义分割实践——Pytorch网络过程实现理解
一、卷积操作 (一)普通卷积(Convolution) (二)空洞卷积(Atrous Convolution) 根据空洞卷积的定义,显然可以意识到空洞卷积可以提取到同一输入的不同尺度下的特征图&…...

画质提升+带宽优化,小红书音视频团队端云结合超分落地实践
随着视频业务和短视频播放规模不断增长,小红书一直致力于研究:如何在保证提升用户体验质量的同时降低视频带宽成本? 在近日结束的音视频技术大会「LiveVideoStackCon 2023」上海站中,小红书音视频架构视频图像处理算法负责人剑寒向…...

【傅里叶级数与傅里叶变换】数学推导——3、[Part4:傅里叶级数的复数形式] + [Part5:从傅里叶级数推导傅里叶变换] + 总结
文章内容来自DR_CAN关于傅里叶变换的视频,本篇文章提供了一些基础知识点,比如三角函数常用的导数、三角函数换算公式等。 文章全部链接: 基础知识点 Part1:三角函数系的正交性 Part2:T2π的周期函数的傅里叶级数展开 P…...

第二章MyBatis入门程序
入门程序 创建maven程序 导入MyBatis依赖。pom.xml下导入如下依赖 <dependencies><dependency><groupId>org.mybatis</groupId><artifactId>mybatis</artifactId><version>3.5.6</version></dependency><dependen…...

AgentBench::AI智能体发展的潜在问题(二)
从历史上看,几乎每一种新技术的广泛应用都会在带来新机遇的同时引发很多新问题,AI智能体也不例外。从目前的发展看,AI智能体的发展可能带来的新问题可能包括如下方面: 第二是AI智能体的普及将有可能进一步加剧AI造成的技术性失业。…...
C++中的运算符总结(4):逻辑运算符(上)
C中的运算符总结(4):逻辑运算符(上) 8、逻辑运算 NOT、 AND、 OR 和 XOR 逻辑 NOT 运算用运算符!表示,用于单个操作数。表 1是逻辑 NOT 运算的真值表,这种运算将提供的布尔标记反转࿱…...

Flink安装与使用
1.安装准备工作 下载flink Apache Flink: 下载 解压 [dodahost166 bigdata]$ tar -zxvf flink-1.12.0-bin-scala_2.11.tgz 2.Flinnk的standalone模式安装 2.1修改配置文件并启动 修改,好像使用默认的就可以了 [dodahost166 conf]$ more flink-conf.yaml 启动 …...

CentOS系统环境搭建(七)——Centos7安装MySQL
centos系统环境搭建专栏🔗点击跳转 坦诚地说,本文中百分之九十的内容都来自于该文章🔗Linux:CentOS7安装MySQL8(详),十分佩服大佬文章结构合理,文笔清晰,我曾经在这篇文章…...
3.react useRef使用与常见问题
react useRef使用与常见问题 文章目录 react useRef使用与常见问题1. Dom操作: useRef()2. 函数组件的转发: React.forwardRef()3. 对普通值进行记忆, 类似于一个class的实例属性4. 结合useEffect,只在更新时触发FAQ 1. Dom操作: useRef() // 1. Dom操作: useRef()let app doc…...

Axios使用CancelToken取消重复请求
处理重复请求:没有响应完成的请求,再去请求一个相同的请求,会把之前的请求取消掉 新增一个cancelRequest.js文件 import axios from "axios" const cancelTokens {}export const addPending (config) > {const requestKey …...

九耶丨阁瑞钛伦特-Spring boot与Spring cloud 之间的关系
Spring Boot和Spring Cloud是两个相互关联的项目,它们可以一起使用来构建微服务架构。 Spring Boot是一个用于简化Spring应用程序开发的框架,它提供了自动配置、快速开发的特性,使得开发人员可以更加轻松地创建独立的、生产级别的Spring应用程…...

总结,由于顺丰的问题,产生了电脑近期一个月死机问题集锦
由于我搬家,我妈搞顺丰发回家,但是没有检查有没有坏,并且我自己由于不可抗力因素,超过了索赔时间,反馈给顺丰客服,说超过了造成了无法索赔的情况,现在总结发生了损坏配件有几件,显卡…...

C#程序配置读写例子 - 开源研究系列文章
今天讲讲关于C#的配置文件读写的例子。 对于应用程序的配置文件,以前都是用的ini文件进行读写的,这个与现在的json类似,都是键值对应的,这次介绍的是基于XML的序列化和反序列化的读写例子。对于ini文件,操作系统已经提…...
Angular中的管道Pipes
Angular中的管道(Pipes)是一种强大的工具,它可以处理和转换数据,然后将其呈现在视图中。它们可以被用于排序、格式化和过滤数据等任务。在本文中,我们将介绍Angular中的管道以及如何使用它们来简化开发过程。 管道的基…...

React入门 jsx学习笔记
一、JSX介绍 概念:JSX是 JavaScript XML(HTML)的缩写,表示在 JS 代码中书写 HTML 结构 作用:在React中创建HTML结构(页面UI结构) 优势: 采用类似于HTML的语法,降低学…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

如何在Windows本机安装Python并确保与Python.NET兼容
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
从实验室到产业:IndexTTS 在六大核心场景的落地实践
一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...
深入解析 ReentrantLock:原理、公平锁与非公平锁的较量
ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...