当前位置: 首页 > news >正文

Python Opencv实践 - 图像高斯滤波(高斯模糊)

import cv2 as cv
import numpy as np
import matplotlib.pyplot as pltimg = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
rows,cols,channels = img.shape
print(rows,cols,channels)#为图像添加高斯噪声
#使用np.random.normal(loc=0.0, scale=1.0, size=None)
# loc: 高斯分布中心点,分布的均值
# scale: 高斯分布的宽度,分布的标准差
# size:维度。如果给定维度是(m,n,k)则从分布中抽取m*n*k个样本
#参考资料:https://blog.csdn.net/wzy628810/article/details/103807829
#         https://blog.csdn.net/sinat_29957455/article/details/123977298
def AddGaussianNoise(image, mean=0, var=0.005):image = np.array(image/255, dtype=float)                    #将像素值归一noise = np.random.normal(mean, var ** 0.5, image.shape)     #产生高斯噪声out = image + noise                                         #直接将归一化的图片与噪声相加if out.min() < 0:low_clip = -1.else:low_clip = 0.out = np.clip(out, low_clip, 1.0)out = np.uint8(out*255)return outimg_gaussian_noise = img.copy()
gauss_mean = 0
gauss_sigma = 0.003
#增加高斯噪声到图像
img_gaussian_noise = AddGaussianNoise(img_gaussian_noise, gauss_mean, gauss_sigma)#高斯滤波(高斯模糊)
#cv.GaussianBlur(src, ksize, sigmaX, sigmaY, borderType)
#src: 输入图像
#ksize: kernel大小,高斯卷积和大小。注意卷积核的宽度和高度可以不同,但必须为正数且为奇数,也可以为零。
#sigmaX/Y: X和Y方向上的高斯标准差
#参考资料:https://blog.csdn.net/weixin_52012241/article/details/122284713
img_gaussian_blur_origin = cv.GaussianBlur(img, (3,3), 0)
img_gaussian_blur_noise = cv.GaussianBlur(img_gaussian_noise, (13,13), 0.006)#显示图像
fig,axes = plt.subplots(nrows=2, ncols=2, figsize=(10,10), dpi=100)
axes[0][0].imshow(img[:,:,::-1])
axes[0][0].set_title("Original")
axes[0][1].imshow(img_gaussian_blur_origin[:,:,::-1])
axes[0][1].set_title("Original Gaussian Blurred")
axes[1][0].imshow(img_gaussian_noise[:,:,::-1])
axes[1][0].set_title("Add Gaussian Noise")
axes[1][1].imshow(img_gaussian_blur_noise[:,:,::-1])
axes[1][1].set_title("Gaussian Noise Blurred")

 

 

 

相关文章:

Python Opencv实践 - 图像高斯滤波(高斯模糊)

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols,channels img.shape print(rows,cols,channels)#为图像添加高斯噪声 #使用np.random.normal(loc0.0, scale1.0…...

使用 Qt 生成 Word 和 PDF 文档的详细教程

系列文章目录 文章目录 系列文章目录前言一、安装 Qt二、生成 Word 文档三、生成 PDF 文档四、运行代码并查看结果五、自定义文档内容总结 前言 Qt 是一个跨平台的应用程序开发框架&#xff0c;除了用于创建图形界面应用程序外&#xff0c;还可以用来生成 Word 和 PDF 文档。本…...

ssm+vue校园美食交流系统源码

ssmvue校园美食交流系统源码和论文026 开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 技术&#xff1a;ssm 摘 要 随着现在网络的快速发展&#xff0c;网上管理系统也逐渐快速发展起来&#xff0c;网上管理模式很快融入到了许多商…...

电力系统基础知识(一)—电力系统概述

1、电压 也称作电势差或电位差&#xff0c;是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B点所做的功,电压的方向规定为从高电位指向低电位。其单位为伏特(V,简称伏),常用单位还有千伏(kV)、毫伏(mV)、微伏(uV…...

spring(15) SpringBoot启动过程

目录 一、过程简介二、过程流程图三、源码分析1、运行 SpringApplication.run() 方法2、确定应用程序类型3、加载所有的初始化器4、加载所有的监听器5、设置程序运行的主类6、开启计时器7、将 java.awt.headless 设置为 true8、获取并启用监听器9、设置应用程序参数10、准备环境…...

耕地单目标语义分割实践——Pytorch网络过程实现理解

一、卷积操作 &#xff08;一&#xff09;普通卷积&#xff08;Convolution&#xff09; &#xff08;二&#xff09;空洞卷积&#xff08;Atrous Convolution&#xff09; 根据空洞卷积的定义&#xff0c;显然可以意识到空洞卷积可以提取到同一输入的不同尺度下的特征图&…...

画质提升+带宽优化,小红书音视频团队端云结合超分落地实践

随着视频业务和短视频播放规模不断增长&#xff0c;小红书一直致力于研究&#xff1a;如何在保证提升用户体验质量的同时降低视频带宽成本&#xff1f; 在近日结束的音视频技术大会「LiveVideoStackCon 2023」上海站中&#xff0c;小红书音视频架构视频图像处理算法负责人剑寒向…...

【傅里叶级数与傅里叶变换】数学推导——3、[Part4:傅里叶级数的复数形式] + [Part5:从傅里叶级数推导傅里叶变换] + 总结

文章内容来自DR_CAN关于傅里叶变换的视频&#xff0c;本篇文章提供了一些基础知识点&#xff0c;比如三角函数常用的导数、三角函数换算公式等。 文章全部链接&#xff1a; 基础知识点 Part1&#xff1a;三角函数系的正交性 Part2&#xff1a;T2π的周期函数的傅里叶级数展开 P…...

第二章MyBatis入门程序

入门程序 创建maven程序 导入MyBatis依赖。pom.xml下导入如下依赖 <dependencies><dependency><groupId>org.mybatis</groupId><artifactId>mybatis</artifactId><version>3.5.6</version></dependency><dependen…...

AgentBench::AI智能体发展的潜在问题(二)

从历史上看&#xff0c;几乎每一种新技术的广泛应用都会在带来新机遇的同时引发很多新问题&#xff0c;AI智能体也不例外。从目前的发展看&#xff0c;AI智能体的发展可能带来的新问题可能包括如下方面&#xff1a; 第二是AI智能体的普及将有可能进一步加剧AI造成的技术性失业。…...

C++中的运算符总结(4):逻辑运算符(上)

C中的运算符总结&#xff08;4&#xff09;&#xff1a;逻辑运算符&#xff08;上&#xff09; 8、逻辑运算 NOT、 AND、 OR 和 XOR 逻辑 NOT 运算用运算符!表示&#xff0c;用于单个操作数。表 1是逻辑 NOT 运算的真值表&#xff0c;这种运算将提供的布尔标记反转&#xff1…...

Flink安装与使用

1.安装准备工作 下载flink Apache Flink: 下载 解压 [dodahost166 bigdata]$ tar -zxvf flink-1.12.0-bin-scala_2.11.tgz 2.Flinnk的standalone模式安装 2.1修改配置文件并启动 修改&#xff0c;好像使用默认的就可以了 [dodahost166 conf]$ more flink-conf.yaml 启动 …...

CentOS系统环境搭建(七)——Centos7安装MySQL

centos系统环境搭建专栏&#x1f517;点击跳转 坦诚地说&#xff0c;本文中百分之九十的内容都来自于该文章&#x1f517;Linux&#xff1a;CentOS7安装MySQL8&#xff08;详&#xff09;&#xff0c;十分佩服大佬文章结构合理&#xff0c;文笔清晰&#xff0c;我曾经在这篇文章…...

3.react useRef使用与常见问题

react useRef使用与常见问题 文章目录 react useRef使用与常见问题1. Dom操作: useRef()2. 函数组件的转发: React.forwardRef()3. 对普通值进行记忆, 类似于一个class的实例属性4. 结合useEffect,只在更新时触发FAQ 1. Dom操作: useRef() // 1. Dom操作: useRef()let app doc…...

Axios使用CancelToken取消重复请求

处理重复请求&#xff1a;没有响应完成的请求&#xff0c;再去请求一个相同的请求&#xff0c;会把之前的请求取消掉 新增一个cancelRequest.js文件 import axios from "axios" const cancelTokens {}export const addPending (config) > {const requestKey …...

九耶丨阁瑞钛伦特-Spring boot与Spring cloud 之间的关系

Spring Boot和Spring Cloud是两个相互关联的项目&#xff0c;它们可以一起使用来构建微服务架构。 Spring Boot是一个用于简化Spring应用程序开发的框架&#xff0c;它提供了自动配置、快速开发的特性&#xff0c;使得开发人员可以更加轻松地创建独立的、生产级别的Spring应用程…...

总结,由于顺丰的问题,产生了电脑近期一个月死机问题集锦

由于我搬家&#xff0c;我妈搞顺丰发回家&#xff0c;但是没有检查有没有坏&#xff0c;并且我自己由于不可抗力因素&#xff0c;超过了索赔时间&#xff0c;反馈给顺丰客服&#xff0c;说超过了造成了无法索赔的情况&#xff0c;现在总结发生了损坏配件有几件&#xff0c;显卡…...

C#程序配置读写例子 - 开源研究系列文章

今天讲讲关于C#的配置文件读写的例子。 对于应用程序的配置文件&#xff0c;以前都是用的ini文件进行读写的&#xff0c;这个与现在的json类似&#xff0c;都是键值对应的&#xff0c;这次介绍的是基于XML的序列化和反序列化的读写例子。对于ini文件&#xff0c;操作系统已经提…...

Angular中的管道Pipes

Angular中的管道&#xff08;Pipes&#xff09;是一种强大的工具&#xff0c;它可以处理和转换数据&#xff0c;然后将其呈现在视图中。它们可以被用于排序、格式化和过滤数据等任务。在本文中&#xff0c;我们将介绍Angular中的管道以及如何使用它们来简化开发过程。 管道的基…...

React入门 jsx学习笔记

一、JSX介绍 概念&#xff1a;JSX是 JavaScript XML&#xff08;HTML&#xff09;的缩写&#xff0c;表示在 JS 代码中书写 HTML 结构 作用&#xff1a;在React中创建HTML结构&#xff08;页面UI结构&#xff09; 优势&#xff1a; 采用类似于HTML的语法&#xff0c;降低学…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...

算法刷题-回溯

今天给大家分享的还是一道关于dfs回溯的问题&#xff0c;对于这类问题大家还是要多刷和总结&#xff0c;总体难度还是偏大。 对于回溯问题有几个关键点&#xff1a; 1.首先对于这类回溯可以节点可以随机选择的问题&#xff0c;要做mian函数中循环调用dfs&#xff08;i&#x…...

C#最佳实践:为何优先使用as或is而非强制转换

C#最佳实践&#xff1a;为何优先使用as或is而非强制转换 在 C# 的编程世界里&#xff0c;类型转换是我们经常会遇到的操作。就像在现实生活中&#xff0c;我们可能需要把不同形状的物品重新整理归类一样&#xff0c;在代码里&#xff0c;我们也常常需要将一个数据类型转换为另…...

STL 2迭代器

文章目录 1.迭代器2.输入迭代器3.输出迭代器1.插入迭代器 4.前向迭代器5.双向迭代器6.随机访问迭代器7.不同容器返回的迭代器类型1.输入 / 输出迭代器2.前向迭代器3.双向迭代器4.随机访问迭代器5.特殊迭代器适配器6.为什么 unordered_set 只提供前向迭代器&#xff1f; 1.迭代器…...

02-性能方案设计

需求分析与测试设计 根据具体的性能测试需求&#xff0c;确定测试类型&#xff0c;以及压测的模块(web/mysql/redis/系统整体)前期要与相关人员充分沟通&#xff0c;初步确定压测方案及具体的性能指标QA完成性能测试设计后&#xff0c;需产出测试方案文档发送邮件到项目组&…...