基于Opencv的虚拟拖拽项目
预备知识
勾股定理
跟随移动算法
手势识别图解

项目源代码
"""
演示一个简单的虚拟拖拽
步骤:
1、opencv 读取视频流
2、在视频图像上画一个方块
3、通过mediapipe库获取手指关节坐标
4、判断手指是否在方块上
5、是,方块跟着移动
6、完善:通过食指和中指指尖距离确定是否激活移动
7、完善:画面显示FPS等信息
"""
import cv2
import math#导入mediapipe的相关模块
# 导入mediapipe:https://google.github.io/mediapipe/solutions/hands
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.handshands = mp_hands.Hands(model_complexity=0,min_detection_confidence=0.5,min_tracking_confidence=0.5)#读取视频流
cap = cv2.VideoCapture(0) #调用摄像头#获取画面的长度和宽度
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
print(f"width = {width}\n")
print(f"height = {height}")
#方块初始化数组
x = 100
y = 100
w = 200
h = 200on_square = False
square_color = (0,255,0)while True:ret,frame = cap.read()#读取视频帧if ret:#镜像frame = cv2.flip(frame,1)frame.flags.writeable = Falseframe = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)#识别results = hands.process(frame)frame.flags.writeable = Trueframe = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)#如果有结果的话if results.multi_hand_landmarks:#遍历双手for hand_landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(frame,hand_landmarks,mp_hands.HAND_CONNECTIONS,mp_drawing_styles.get_default_hand_landmarks_style(),mp_drawing_styles.get_default_hand_connections_style())# 使用这两句看一下里面到底是什么?# print(type(hand_landmarks))# print(hand_landmarks)# exit()#21个关键点的x、y坐标列表x_list = []y_list = []for landmarks in hand_landmarks.landmark:x_list.append(landmarks.x)y_list.append(landmarks.y)#输出一下长度# print(len(x_list))# 获取食指指尖坐标,坐标位置查看:https://google.github.io/mediapipe/solutions/handsindex_finger_x = int(x_list[8] * width)index_finger_y = int(y_list[8] * height)# 获取中指坐标middle_finger_x = int(x_list[12] * width)middle_finger_y = int(y_list[12] * height)# 计算两指距离# finger_distance =math.sqrt( (middle_finger_x - index_finger_x)**2 + (middle_finger_y-index_finger_y)**2)finger_distance = math.hypot((middle_finger_x - index_finger_x),(middle_finger_y - index_finger_y))# 看一下距离# print(finger_distance)#把食指画出来cv2.circle(frame,(index_finger_x,index_finger_y),20,(0,0,255),-1)#判断食指指尖在不在方块上if finger_distance < 60:# X坐标范围 Y坐标范围if (index_finger_x > x and index_finger_x < (x+w)) and (index_finger_y > y and index_finger_y < (y+h)):if on_square == False:print('在')L1 = index_finger_x - xL2 = index_finger_y - ysquare_color = (255,0,255)on_square = Trueelse:print("不在")else:#解除on_square = Falsesquare_color = (0,255,0)#更新坐标if on_square:x = index_finger_x - L1y = index_finger_y - L2#在视频中画一个方块# cv2.rectangle(frame,(x,y),(x+w,y+h),square_color,-1)#半透明处理overlay = frame.copy()cv2.rectangle(frame, (x, y), (x + w, y + h), square_color, -1)frame = cv2.addWeighted(overlay, 0.5, frame, 1 - 0.5, 0)#展示画面cv2.imshow("demo",frame)#退出条件if cv2.waitKey(10) & 0xFF == ord('q'):break
项目效果

相关文章:
基于Opencv的虚拟拖拽项目
预备知识 勾股定理 跟随移动算法 手势识别图解 项目源代码 """ 演示一个简单的虚拟拖拽 步骤: 1、opencv 读取视频流 2、在视频图像上画一个方块 3、通过mediapipe库获取手指关节坐标 4、判断手指是否在方块上 5、是,方块跟着移动 6、…...
基于单片机DHT11温湿度NRF2401无线通信控制系统
一、系统方案 本设计采用STC89C5单片机作为主控制器,从机采用DHT11传感器采集温湿度、按键设置报警阀值,液晶1602显示,蜂鸣器报警,无线NRF2401模块。 二、硬件设计 原理图如下: 三、单片机软件设计 1、首先是系统…...
AutoSAR配置与实践(基础篇)2.5 RTE对数据一致性的管理
传送门 点击返回 ->AUTOSAR配置与实践总目录 AutoSAR配置与实践(基础篇)2.5 RTE对数据一致性的管理 一、 数据一致性问题引入二、 数据一致性的管理2.1 RTE管理 (SWC间)2.2 中断保护 (SWC内)2.3 变量保护IRVS (SWC内)2.4 Task分配2.5 任务抢占控制 一…...
ASP.NET WEB API通过SugarSql连接MySQL数据库
注意:VS2022企业版可以,社区版可能存在问题。实体名称和字段和数据库中的要一致。 1、创建项目,安装SqlSugarCore、Pomelo.EntityFrameworkCore.MySql插件 2、文件结构 2、appsettings.json { “Logging”: { “LogLevel”: { “Default”: …...
08-微信小程序视图层
08-微信小程序视图层 文章目录 视图层 ViewWXML数据绑定列表渲染条件渲染模板引用importimport 的作用域include WXSS尺寸单位样式导入内联样式选择器全局样式与局部样式 WXS注意事项页面渲染数据处理 视图层 View 框架的视图层由 WXML 与 WXSS 编写,由组件来进行…...
[机器学习]特征工程:特征降维
特征降维 1、简介 特征降维是指通过减少特征空间中的维度,将高维数据映射到一个低维子空间的过程。 在机器学习和数据分析中,特征降维可以帮助减少数据的复杂性、降低计算成本、提高模型性能和可解释性,以及解决维度灾难等问题。特征降维通…...
12. Docker可视化工具
目录 1、前言 2、Docker UI 2.1、部署Docker UI 2.2、管理容器 3、Portainer 3.1、部署Portainer 3.2、管理容器 3.3、添加远程Docker 4、Shipyard 1、前言 Docker 提供了命令行工具来管理 Docker 的镜像和运行 Docker 的容器。我们也可以使用图形工具来管理 Docker。…...
css层叠关系
文章目录 cascading声明冲突应用重置样式表a元素的类选择器顺序问题 cascading cascading – 层叠 解决声明冲突的过程,浏览器会自动处理;就是计算样式的权重,权重大的就被选择; 声明冲突 是指多个选择器选中同一个标签&#x…...
【Unity实战篇 】| 如何在小游戏中快速接入一个新手引导教程
前言 【Unity实战篇 】 | 如何在小游戏中快速接入一个新手引导教程一、简单教程描述二、接入Tutorial Master 实现游戏引导2.1 导入Tutorial Master2插件2.2 添加TutorialMasterManager脚本对象2.3 配置Tutorial,用于管理第一段引导内容2.4 配置Stage,用…...
Lookup Singularity
1. 引言 Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出: 其主要目的是:让SNARK前端生成仅需做lookup的电路。Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证ÿ…...
idea 本地版本控制 local history
idea 本地版本控制 local history 如何打开 1 自定义快捷键 settings->keymap->搜索框输入 show history -》Add Keyboard Shortcut -》设置为 CtrlAltL 2 右键文件-》local history -》show history 新建文件 版本1,creating class com.geekmice…这个是初…...
【Freertos基础入门】深入浅出freertos互斥量
文章目录 前言一、互斥量是什么?二、互斥量的使用场景三、互斥量的使用1.创建 2.删除互斥量3.give和take四、示例代码总结 前言 FreeRTOS是一款开源的实时操作系统,提供了许多基本的内核对象,其中包括互斥锁(Mutex)。…...
皮爷咖啡基于亚马逊云科技的数据架构,加速数据治理进程
皮爷咖啡(Peet’s Coffee)是美国精品咖啡品牌,于2017年进入中国,为中国消费者带来传统经典咖啡饮品,并特别呈现更加丰富的品质咖啡饮品体验。通过深入应用亚马逊云科技云原生数据库产品Amazon Redshift以及Amazon DMS等…...
C++ string类详解
⭐️ string string 是表示字符串的字符串类,该类的接口与常规容器的接口基本一致,还有一些额外的操作 string 的常规操作,在使用 string 类时,需要使用 #include <string> 以及 using namespace std;。 ✨ 帮助文档&…...
深入浅出Pytorch函数——torch.nn.init.ones_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
一、docker及mysql基本语法
文章目录 一、docker相关命令二、mysql相关命令 一、docker相关命令 (1)拉取镜像:docker pull <镜像ID/image> (2)查看当前docker中的镜像:docker images (3)删除镜像&#x…...
【计算机网络】13、ARP 包:广播自己的 mac 地址和 ip
机器启动时,会向外广播自己的 mac 地址和 ip 地址,这个即称为 arp 协议。范围是未经过路由器的部分,如下图的蓝色部分,范围内的设备都会在本地记录 mac 和 ip 的绑定信息,若有重复则覆盖更新(例如先收到 ma…...
通过微软Azure调用GPT的接口API-兼容平替OpenAI官方的注意事项
众所周知,我们是访问不通OpenAI官方服务的,但是我们可以自己通过代理或者使用第三方代理访问接口 现在新出台的规定禁止使用境外的AI大模型接口对境内客户使用,所以我们需要使用国内的大模型接口 国内的效果真的很差,现在如果想使…...
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计…...
GAN!生成对抗网络GAN全维度介绍与实战
目录 一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2 数学背景2.2.1 损失函数生成器损失判别器损失 2.2.2 优化方法优化代…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
CMS内容管理系统的设计与实现:多站点模式的实现
在一套内容管理系统中,其实有很多站点,比如企业门户网站,产品手册,知识帮助手册等,因此会需要多个站点,甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...
spring boot使用HttpServletResponse实现sse后端流式输出消息
1.以前只是看过SSE的相关文章,没有具体实践,这次接入AI大模型使用到了流式输出,涉及到给前端流式返回,所以记录一下。 2.resp要设置为text/event-stream resp.setContentType("text/event-stream"); resp.setCharacter…...
【大厂机试题解法笔记】矩阵匹配
题目 从一个 N * M(N ≤ M)的矩阵中选出 N 个数,任意两个数字不能在同一行或同一列,求选出来的 N 个数中第 K 大的数字的最小值是多少。 输入描述 输入矩阵要求:1 ≤ K ≤ N ≤ M ≤ 150 输入格式 N M K N*M矩阵 输…...
