当前位置: 首页 > news >正文

差值结构的复合底部

( A, B )---3*30*2---( 1, 0 )( 0, 1 )

让网络的输入只有3个节点,AB训练集各由6张二值化的图片组成,让A 中有3个点,B中有1个点,且不重合,统计迭代次数并排序。

其中有20组数据

让迭代次数与排斥能成反比,排斥能E=EA+EB+EAB。其中因为B只有1个点,则EB=0.

计算EA相当于假设B中全是0.则结构A的底部就仅仅取决于A的内在特点,与B无关。因此在计算0*2*0*0*0*6-1*0*0*0*0*0的EA是应该调整A的结构

-

-

-

1

1

-

-

1

-

-

-

-

-

-

-

-

1

-

-

-

-

-

-

-

-

-

-

-

-

-

1

1

-

-

-

-

1.5

3

因为点最多的行就是结构的天然底部,因此结构0*2*0*0*0*6-1*0*0*0*0*0的EA是3而不是1.5.

而在计算相互作用能的时候,因为训练集AB进样有先后顺序,因此相互作用能的底部由进样先后顺序唯一的确定,

EAB1

EAB2

-

-

2

-

-

2

-

-

2

-

1

-

-

0

-

-

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1

1

-

1

0

-

0

0

-

因此结构0*2*0*0*0*6-1*0*0*0*0*0相互作用能的底部就是- - 2,因为B的点先进样训练,并且假设这种短程相互作用不能隔行传播,且这种短程相互作用只能在AB之间进行,因此相互作用能分成EAB1和EAB2两个独立的结构。

将所有数据汇总

排斥能和迭代次数成反比。因此这个二分类的差值结构对应两种不同的相互作用有两种不同的底部。

相关文章:

差值结构的复合底部

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点,AB训练集各由6张二值化的图片组成,让A 中有3个点,B中有1个点,且不重合,统计迭代次数并排序。 其中有20组数据 让迭代次数与排斥能成反比,排…...

在Docker 上使用 Nginx 配置https及wss

预先创建挂载文件 /mydata/nginx/conf/nginx.conf /mydata/nginx/cert /mydata/nginx/conf.d /mydata/nginx/html /mydata/nginx/logs运行并且挂载容器 docker run -p 80:80 -p 443:443 --name nginx01 --restartalways \ -v /mydata/nginx/conf/nginx.conf:/etc/nginx/ngi…...

git回退操作

1. 在工作区回退: 此时文件没有经过任何提交 git checkout -- filename2. git add之后回退 git reset HEAD3. git commit 之后回退 git reset --hard commit_id(前4位)其中,commit_id可通过git log查看,例如: qzcryqz MINGW6…...

C++系列-类和对象-静态成员

类和对象-静态成员 静态成员静态成员变量静态成员函数 静态成员 静态成员就是在成员变量或者是成员函数前面加上static关键字。 静态成员变量 所有对象共享同一份数据在编译阶段分配内存类内声明,类外初始化可以通过对象或者类名进行访问。静态成员变量也具有访问…...

SAP MM学习笔记26- SAP中 振替转记(转移过账)和 在库转送(库存转储)2- 品目Code振替转记 和 在库转送

SAP 中在库移动 不仅有入库(GR),出库(GI),也可以是单纯内部的转记或转送。 1,振替转记(转移过账) 2,在库转送(库存转储) 1&#xff…...

【Python机器学习】实验13 基于神经网络的回归-分类实验

文章目录 神经网络例1 基于神经网络的回归(简单例子)1.1 导入包1.2 构造数据集(随机构造的)1.3 构造训练集和测试集1.4 构建神经网络模型1.5 采用训练数据来训练神经网络模型 实验:基于神经网络的分类(鸢尾花数据集)1. 导入包2. 构造数据集3.…...

【数据结构】二叉树的链式结构的实现 -- 详解

一、前置说明 在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习。 typedef char BTDataType;typedef struct Binar…...

【C语言】什么是结构体内存对齐?结构体的大小怎么计算?

目录 1.结构体内存对齐 对偏移量的理解:​ 2.结构体的大小计算 2.1结构体中只有普通的数据类型的大小计算 2.2 结构体中有嵌套的结构体的大小计算 3.修改默认对齐数 4.为什么存在内存对齐? 这篇文章主要介绍结构体内存对齐和如何计算大小。 在学习结构体内存…...

【Redis】Redis中的布隆过滤器

【Redis】Redis中的布隆过滤器 前言 在实际开发中,会遇到很多要判断一个元素是否在某个集合中的业务场景,类似于垃圾邮件的识别,恶意IP地址的访问,缓存穿透等情况。类似于缓存穿透这种情况,有许多的解决方法&#xf…...

接口测试 —— Jmeter 参数加密实现

Jmeter有两种方法可以实现算法加密 1、使用__digest自带函数 参数说明: Digest algorithm:算法摘要,可输入值:MD2、MD5、SHA-1、SHA-224、SHA-256、SHA-384、SHA-512 String to be hashed:要加密的数据 Salt to be…...

Linux c语言字节序

文章目录 一、简介二、大小端判断2.1 联合体2.2 指针2.3 网络字节序 一、简介 字节序(Byte Order)指的是在存储和表示多字节数据类型(如整数和浮点数)时,字节的排列顺序。常见的字节序有大端字节序(Big En…...

批量将excel中第5列中内容将人名和电话号码进行分列

使用Python可以使用openpyxl库来实现批量将Excel中第5列的内容分列为人名和电话号码的操作。下面是示例代码: import openpyxl def split_names_and_phone_numbers(file_path, sheet_name): # 加载Excel文件 workbook openpyxl.load_workbook(file_path) …...

WPF DataGrid columns表头根据数据集动态动态生成Demo

思路是这样的&#xff0c;数组集合装表头的信息&#xff0c;遍历这个集合&#xff0c;遍历过程中处理一下数据&#xff0c;然后就把每表头信息添加到dataGrid2.Columns.Add(templateColumn); 1&#xff0c;页面Xaml代码&#xff1a; <DataGrid x:Name"dataGrid" …...

1339. 分裂二叉树的最大乘积

链接&#xff1a; ​​​​​​1339. 分裂二叉树的最大乘积 题解&#xff1a; /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* …...

【C++】Stack和Queue

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;那个传说中的man的主页 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;题目大解析3 目录 &#x1f449;&#x1f3fb;Stack Constructor&#x1f449;&#x1f3fb;Stack …...

Maven之tomcat7-maven-plugin 版本低的问题

tomcat7-maven-plugin 版本『低』的问题 相较于当前最新版的 tomcat 10 而言&#xff0c;tomcat7-maven-plugin 确实看起来很显老旧。但是&#xff0c;这个问题并不是问题&#xff0c;至少不是大问题。 原因 1&#xff1a;tomcat7-maven-plugin 仅用于我们&#xff08;程序员&…...

在项目中如何解除idea和Git的绑定

在项目中如何解除idea和Git的绑定 1、点击File--->Settings...(CtrlAltS)--->Version Control--->Directory Mappings--->点击取消Git的注册根路径&#xff1a; 2、回到idea界面就没有Git了&#xff1a; 3、给这个项目初始化 这样就可以重新绑定远程仓库了&#x…...

AGI 在网易云信的技术提效和业务创新

We believe our research will eventually lead to artificial general intelligence, a system that can solve human-level problems. Building safe and beneficial AGI is our mission. ---- OpenAI 通用人工智能 AGI 作为 AI 的终极形态&#xff0c;是 AI 行业内追求的演…...

线性代数的学习和整理9(草稿-----未完成)

3.3 特征值和特征向量是什么&#xff1f; 直接说现在&#xff1a;特征向量这个块往哪个方向进行了拉伸&#xff0c;各个方向拉伸了几倍。这也让人很容易理解为什么&#xff0c;行列式的值就是特征值的乘积。 特征向量也代表了一些良好的性质&#xff0c;即这些线在线性变换后…...

React的useReducer与Reudx对比

useReducer 和 Redux 都是用于处理应用程序的状态管理的工具&#xff0c;但它们在概念和使用场景上存在一些区别。 useReducer&#xff1a; useReducer 是 React 提供的一个 Hook&#xff0c;用于管理局部状态。它接受一个 reducer 函数和初始状态&#xff0c;并返回一个包含当…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...