opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()
前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一种与图像比例无关的角点检测方法来解决。
SIFT(Scale-Invariant Feature Transform)尺度不变特征变换可以解决这个问题。
注意: SIFT 并不检测关键点(关键点由Difference of Gaussians检测),SIFT会通过一个特征向量来描述关键点周围区域的情况。DoG操作的最终结果会得到感兴趣的区域(关键点),这将通过SIFT来进行说明。
函数说明:
sift =cv2.SIFT_create([, nfeatures[, nOctaveLayers[,
contrastThreshold[, edgeThreshold]]]])
参数:
-
nfeatures: 保留的最佳功能的数量。这些特征按其分数排名(在SIFT算法中作为局部对比度测量)。
-
nOctaveLayers:每个八度中的层数。3是D.Lowe(原作者)论文中使用的值。八度的数量是根据图像分辨率自动计算的。
-
contrastThreshold:用于过滤掉半均匀(低对比度)区域中的弱特征的对比度阈值。阈值越大,检测器产生的特征越少。应用过滤时,对比度阈值将被nOctaveLayers除。当nOctaveLayers设置为默认值并且如果要使用D.Lowe论文中使用的值0.03时,请将此参数设置为0.09。
-
edgeThreshold:用于过滤边缘特征的阈值。请注意,其含义与contrastThreshold不同,即edgeThreshold越大,滤除的特征越少(保留的特征越多)。
返回值:
- sift:实例化一个sift特征检测器。
示例:对图像检测DoG特征并提取SIFT描述符
实验原图:

import cv2
import numpy as npimg = cv2.imread('images\\sumian.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)sift = cv2.xfeatures2d.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray, None)img = cv2.drawKeypoints(image= img, outImage= img, keypoints= keypoints, flags= cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, color= (0, 0, 255))cv2.imshow('sift', img)
cv2.waitKey()
cv2.destroyAllWindows()
发现是,如果你沿用之前的代码即
descriptor = cv2.xfeatures2d.SIFT_create()
会出现一个warning,但不影响结果。
[ WARN:0@0.037] global shadow_sift.hpp:15 cv::xfeatures2d::SIFT_create DEPRECATED: cv.xfeatures2d.SIFT_create() is deprecated due SIFT tranfer to the main repository. https://github.com/opencv/opencv/issues/16736
这是因为新版本的SIFT可以直接引用,不再需要安装contrib包,即
descriptor = cv2.SIFT_create()
官方公告可参见 OpenCV Google Summer of Code 2020

新代码如下:
import cv2img = cv2.imread('images\\sumiao.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#sift = cv2.xfeatures2d.SIFT_create()
sift = cv2.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray, None)img = cv2.drawKeypoints(image= img, outImage= img, keypoints= keypoints, flags= cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, color= (0, 0, 255))cv2.imshow('sift', img)
cv2.waitKey()
cv2.destroyAllWindows()
运行效果:

相关文章:
opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()
前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一…...
ES5 的构造函数和 ES6 的类有什么区别
文章目录 语法不同方法定义方式不同继承方式不同类内部的this指向不同静态成员定义方式不同访问器属性类的类型检查 在JavaScript中,类和构造函数都被用来创建对象,接下来会从以下几点说说两者的区别: 语法不同 构造函数使用函数来定义类使用…...
AUTOSAR配置与实践(配置篇) 如何条件控制PDU外发
AUTOSAR配置与实践(配置篇)如何条件控制PDU外发 一、需求1.1 需求简要分析1.2 需求进一步分析二、流程实现和具体配置一、需求 需要针对特定的PDU(外发)进行条件控制,这里要通过不同配置字进行PDU是否外发的控制 1.1 需求简要分析 正常PDU分组时分为两组,接收报文组和…...
2023年湖北中级工程师职称申报专业有哪些?甘建二告诉你
中级职称职称申报专业:环境工程、 土木建筑、土建结构、土建监理、土木工程、岩石工程、岩土、土岩方、风景园林、园艺、园林、园林建筑、园林工程、园林绿化、古建筑园林、工民建、工民建安装、建筑、建筑管理、建筑工程、建筑工程管理、建筑施工、建筑设计、建筑装…...
记录:ubuntu20.04+ORB_SLAM2_with_pointcloud_map+ROS noetic
由于相机实时在线运行需要ROS,但Ubuntu22.04只支持ROS2,于是重装Ubuntu20.04。上一篇文章跑通的是官方版本的ORB_SLAM2,不支持点云显示。高翔修改版本支持RGB-D相机的点云显示功能。 高翔修改版本ORB_SLAM2:https://github.com/ga…...
文心问数Sugar Bot :大模型+BI,多轮会话自动生成可视化图表与数据结论
Sugar BI 的文心问数功能是基于大语言模型实现的,支持您使用自然语言,通过多轮会话的方式,获取实时数据的图表展现,也可以自动为您总结与图表相关的业务结论。 文心问数功能邀测中,欢迎CSDN的用户前来报名:…...
21、WEB漏洞-文件上传之后端黑白名单绕过
目录 前言验证/绕过 前言 关于文件上传的漏洞,目前在网上的常见验证是验证三个方面: 后缀名,文件类型,文件头,其中这个文件头是属于文件内容的一个验证 后缀名:黑名单,白名单 文件类型…...
windows的django项目部署到linux的docker上
编辑dockerfile文件,可以自行寻找相关教程 创建镜像 docker bulid -t imagename:tag .查看镜像 docker images 如果想自己先试一下,那就需要运行容器 docker run -it -d -p 8000:8000 --name volume_name imagename:tag 查看容器 docker ps -a 进…...
【力扣】70. 爬楼梯 <动态规划>
【力扣】70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 1 阶 2. …...
数据结构(3)
线性表是多个具有相同特征的数据的有限序列。 前驱元素:A在B前面,称A为B的前驱元素。 后继元素:B在A后面,称B为A的后继元素。 线性表特征: 1.一个元素没有前驱元素,就是头结点; 2.最后一个…...
深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
优橙内推安徽专场——5G网络优化(中高级)工程师
可加入就业QQ群:801549240 联系老师内推简历投递邮箱:hrictyc.com 内推公司1:浙江省邮电工程建设有限公司 内推公司2:北京宜通华瑞科技有限公司 内推公司3:浙江明讯网络技术有限公司 浙江省邮电工程建设有限公司 …...
2023年计算机设计大赛国三 数据可视化 (源码可分享)
2023年暑假参加了全国大学生计算机设计大赛,并获得了国家三等奖(国赛答辩出了点小插曲)。在此分享和记录本次比赛的经验。 目录 一、作品简介二、作品效果图三、设计思路四、项目特色 一、作品简介 本项目实现对农产品近期发展、电商销售、灾…...
工业生产全面感知!工业感知云来了
面向工业企业数字化转型需求,天翼物联基于感知云平台创新能力和5G工业物联数采能力,为客户提供工业感知云服务,包括工业泛协议接入、感知云工业超轻数采平台、工业感知数据治理、工业数据看板四大服务,构建工业感知神经系统新型数…...
Lnton羚通关于Optimization在【PyTorch】中的基础知识
OPTIMIZING MODEL PARAMETERS (模型参数优化) 现在我们有了模型和数据,是时候通过优化数据上的参数来训练了,验证和测试我们的模型。训练一个模型是一个迭代的过程,在每次迭代中,模型会对输出进行猜测&…...
冒泡排序算法
//version 1 void bubblesort(vector<int>& nums){int n=nums.size();for(int i...
无人机航管应答机 ping200XR
产品概述 ping200XR是一个完整的系统,旨在满足航管应答器和自动相关监视广播(ADS-B)的要求,在管制空域操作无人航空系统(UAS)。该系统完全可配置为模式A,模式C,模式S转发器和扩展ADS-B发射机的任何组合。ping200XR包括一个精度超…...
oracle归档日志满了导致启动不起来解决
oracle启动不起来解决 原因:闪回归档区的空间满了 [oraclepre-oracle ~]$ sqlplus / as sysdbaSQL*Plus: Release 11.2.0.4.0 Production on Tue Aug 22 14:48:50 2023Copyright (c) 1982, 2013, Oracle. All rights reserved.Connected to: Oracle Database 11g…...
高等数学:线性代数-第二章
文章目录 第2章 矩阵及其运算2.1 线性方程组和矩阵2.2 矩阵的运算2.3 逆矩阵2.4 Cramer法则 第2章 矩阵及其运算 2.1 线性方程组和矩阵 n \bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组 { a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a …...
星戈瑞分析FITC-PEG-Alkyne的荧光特性和光谱特性
欢迎来到星戈瑞荧光stargraydye!小编带您盘点: FITC-PEG-Alkyne的荧光特性和光谱特性是对其荧光性能进行分析的方面。以下是FITC-PEG-Alkyne的一些常见荧光特性和光谱特性: **1. 荧光激发波长:**FITC-PEG-Alkyne的荧光激发波长通…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
Java中HashMap底层原理深度解析:从数据结构到红黑树优化
一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一,是基于哈希表的Map接口非同步实现。它允许使用null键和null值(但只能有一个null键),并且不保证映射顺序的恒久不变。与Hashtable相比,Hash…...
python打卡day49@浙大疏锦行
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 一、通道注意力模块复习 & CBAM实现 import torch import torch.nn as nnclass CBAM(nn.Module):def __init__…...
