当前位置: 首页 > news >正文

request.getURL()和request.getURI() 以及通过request获得路径相关大全

request.getURL()和request.getURI()

  如果我的请求是:http://localhost:8080/ServletTest/servlet/Hello

  request.getRequestURI() 返回值类似:/ServletTest/servlet/Hello

  request.getRequestURL() 返回值类似:http://localhost:8080/ServletTest/servlet/Hello

  再如:

  request.getContextPath() = /ServletTest

  request.getLocalAddr() = 127.0.0.1

  request.getPathInfo() = null

  request.getPathTranslated() = null

  request.getRemoteAddr() = 127.0.0.1

  request.getRequestURI() = /ServletTest/servlet/Hello

  request.getScheme() = http

  request.getServerName() = 127.0.0.1

  request.getServletPath() = /servlet/Hello

  request.getClass() = class ornnector.RequestFacade

  request.getHeaderNames() = org.apache.tomcat.util.http.NamesEnumerator@1fb050c

  request.getLocale() = zh_CN

  request.getLocales() = org.apache.catalina.util.Enumerator@1088a1b

  request.getParameterMap() = {}

  request.getRequestURL() =

  request.getUserPrincipal() = null

  request.getParameterNames() = java.util.Hashtable$EmptyEnumerator@1db6942

  request.getRealPath("newsPub") =

  D:\zfsca\.metadata\.plugins\com.genuitec.eclipse.easie.tomcat.myeclipse\tomcat\webapps\ServletTest\newsPub

  request.getRealPath("/") =

  D:\zfsca\.metadata\.plugins\com.genuitec.eclipse.easie.tomcat.myeclipse\tomcat\webapps\ServletTest\

相关文章:

request.getURL()和request.getURI() 以及通过request获得路径相关大全

request.getURL()和request.getURI() 如果我的请求是:http://localhost:8080/ServletTest/servlet/Hello request.getRequestURI() 返回值类似:/ServletTest/servlet/Hello request.getRequestURL() 返回值类似:http://localhost:8080/Servle…...

java网络编程-nio学习:阻塞和非阻塞

一、阻塞 阻塞模式下,相关方法都会导致线程暂停 ServerSocketChannel.accept 会在没有连接建立时让线程暂停 SocketChannel.read 会在没有数据可读时让线程暂停 阻塞的表现其实就是线程暂停了,暂停期间不会占用 cpu,但线程相当于闲置 单线…...

JVM-JMM内存模型(happens-before、volatile)

前言 由于计算机的存储设备与处理器的运算速度有几个数量级的差距所以现代计算机系统都不得不加入一层读写速度尽可能接近处理器运算速度的高速缓存(Cache)来作为内存与处理器之间的缓冲。 将运算需要使用到的数据复制到缓存中,让运算能快速进行,当运算…...

算法leetcode|37. 解数独(rust重拳出击)

文章目录37. 解数独:样例 1:提示:分析:题解:rustgoccpythonjava37. 解数独: 编写一个程序,通过填充空格来解决数独问题。 数独的解法需 遵循如下规则: 数字 1-9 在每一行只能出现…...

SpringBoot整合Dubbo

目录1、dubbo简介2、dubbo解决了什么问题3、环境准备4、项目搭建5、总结springboot整合feign可参考我另外一篇文章SpringBoot集成Feign 1、dubbo简介 Apache Dubbo 最初在 2008 年由 Alibaba 捐献开源,很快成为了国内开源服务框架选型的事实标准框架 ,…...

[软件工程导论(第六版)]第9章 面向对象方法学引论(课后习题详解)

文章目录1. 什么是面向对象方法学?它有哪些优点?2. 什么是“对象”?它与传统的数据有何异同?3. 什么是“类”?4. 什么是“继承”?5. 什么是模型?开发软件为何要建模?6. 什么是对象模…...

光学分辨率光声显微镜中基于深度学习的运动校正算法

在这项研究中,我们提出了一种基于深度学习的方法来校正光学分辨率光声显微镜 (OR-PAM) 中的运动伪影。该方法是一种卷积神经网络,它从具有运动伪影的输入原始数据建立端到端映射,以输出校正后的图像。首先,我们进行了仿真研究&…...

浅谈UG二次开发中使用的FindObject

一般我们在业务逻辑里想查找一个Object的时候,会调用FindObject、GetObject、NxObjectManager.Get,不管是上述哪种实现,都是在内存中找东西,找到了就返回对象,否则返回null,但不会触发加载。 这里我分别从建…...

贪心原理及刷题

更新中 概念 使用贪心需要满足,上一步的局部最优解能推出这一步的局部最优解,直到得到全局最优解 而dp这一步的局部最优,不一定来源上一步的局部最优,而可能与更早的解有关,同时dp转移方程的推导也比较复杂 122. 买卖股票的最佳时机 II - 力扣(LeetCode) 这道题是典…...

2023赏金计划:Coremail SRC漏洞征集与样本奖励火热进行中

赏金活动一:Coremail SRC漏洞奖励计划 01 活动背景 2023年1月,Coremail安全应急响应中心(Coremail SRC)正式上线启用,面向公众收集安全漏洞信息与安全情报。Coremail SRC旨在联合众多安全专家、白帽子研究员共同发现…...

简记:清理指定后缀名文件的 powerhsell 小脚本

清理指定后缀名文件的 powerhsell 小脚本jcLee95:https://blog.csdn.net/qq_28550263?spm1001.2101.3001.5343 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq_28550263/article/details/129121074 1.介绍 相关工具代码 2.目…...

问题记录:mac系统偏好设置不展示mysql

Mac新系统升级(10.14.5)后未从appstore下载的软件在安装时会提示安装包已损坏之类的东东,这是因为没有打开“设置”—“安全与隐私”中的“任何来源”造成的,可是升级后的10.14.5却没有这个选项。 那么macOS 10.14.5以上允许任何…...

网络计划--时间参数的计算和优化

根据网络图的基本概念和原则绘制出网络图之后,我们可以计算网络图中有关的时间参数,主要目的是找出关键路线,为网络计划的优化、调整和执行提供明确的时间概念。如下图中从始点①到终点⑧共有4条路线,可以分别计算出每条路线所需的…...

1.2.7存储结构-磁盘管理:磁盘移臂调度算法、先来先服务(FCFS)、最短寻道时间优先(SSTF)、扫描算法(SCAN)、循环扫描(CSCAN)

1.2.7存储结构-磁盘管理:磁盘移臂调度算法、先来先服务(FCFS)、最短寻道时间优先(SSTF)、扫描算法(SCAN)、循环扫描(CSCAN)先来先服务(FCFS)最短寻…...

2022年AI顶级论文 —生成模型之年(上)

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 过去十年来,人工智能技术在持续提高和飞速发展,并不断冲击着人类的认知。 2012年,在ImageNet图像识别挑战赛中,一种神经网络模型(AlexNet&…...

Linux下程序调试的方法【GDB】GDB相关命令和基础操作(命令收藏)

目录 1、编译 2、启动gdb调试 2.1 直接运行 2.2 运行gdb后使用run命令 2.3 调试已运行的程序 3、图形界面提示 4、调试命令 1、查看源码 2、运⾏程序/查看运⾏信息 3、设置断点 5、单步/跳步执⾏ 6、分割窗口 7、其他命令 8、相关参数 1、编译 在编译时要加上-g选…...

使用frp配置内网机器访问

frp简介 frp 是一个开源、简洁易用、高性能的内网穿透和反向代理软件,支持 tcp, udp, http, https等协议。frp 项目官网是 https://github.com/fatedier/frp,软件下载地址为https://github.com/fatedier/frp/releases frp工作原理 服务端运行&#xf…...

简述7个流行的强化学习算法及代码实现!

目前流行的强化学习算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。这些算法已被用于在游戏、机器人和决策制定等各种应用中,并且这些流行的算法还在不断发展和改进,本文我们将对其做一个简单的介绍。1、Q-learningQ-learning:Q-…...

朗润国际期货招商:地方政府工作报告中对于促进消费

地方政府工作报告中对于促进消费 北京:把恢复和扩大消费摆在优先位置。加紧推进国际消费中心城市建设、深化商圈改造提升行动、统筹推进物流基地规划建设,强化新消费地标载体建设、试点建设80个“一刻钟便民生活圈”,提高生活性服务重品质。…...

前端性能优化的一些技巧(90% chatGpt生成)

终于弄好了chatGpt的账号,赶紧来体验一波。先来一波结论,这篇文章的主要内容来源,90%是用chatGpt生成的。先上chatGpt的生成的结果:作为一名懒惰的程序员,chatGpt会帮助我变得更懒...,好了下面开始文章的正…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

网站指纹识别

网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四&#xff…...