当前位置: 首页 > news >正文

Python基础及函数解读(深度学习)

一、语句

1.加注释

单行注释:

(1)在代码上面加注释: # 后面跟一个空格

(2)在代码后面加注释:和代码相距两个空格, # 后面再跟一个空格

多行注释:按住shift + 点击三次"(英文状态下)

2.with...as...

with as 语句操作上下文管理器(context manager),它能够帮助我们自动分配并且释放资源。

二、导入

导入模块有两种常用方法 :import 语句和 from … import 语句

import XXX:导入模块,后调用此模块的ZZ方法时格式为XXX.ZZ()

from XXX import ZZ:ZZ为模块 XXX里的方法,后调用此模块中的ZZ方法时格式为ZZ()

(1条消息) 坑啊!为什么不建议用 from xxx import *!_菜鸟学Python的博客-CSDN博客

1.from __future__ import print_function

该语句是python2的概念,那么python3对于python2就是future了,也就是说,在python2的环境下,超前使用python3的print函数

2.import numpy as np

利用命令“import numpy as np”将numpy库取别名为“np”

3.from tensorboardX import SummaryWriter

是神经网络中的可视化工具

Pytorch中TensorBoard及torchsummary的使用详解 | w3c笔记 (w3cschool.cn)

4.import os

import os python环境下对文件,文件夹执行操作的一个模块

import os.path获取文件的属性

5.import torch.nn.functional as F

包含 torch.nn 库中所有函数

同时包含大量 loss 和 activation function

6.import argparse

(1条消息) argparse.ArgumentParser()用法解析_quantLearner的博客-CSDN博客_argparse.argumentparser() 参数

用来设置命令行参数,参数和超参数的区别:

超参数(Hyperparameter) - HuZihu - 博客园 (cnblogs.com)

三、一般函数解读

1.softplus()激活函数

softplus的数学表达式以及与Relu的函数对比,相当于Relu的平滑

2.forward()

将上一层的输出作为下一层的输入,并计算下一层的输出,一直到运算到输出层为止。

3.os.path.join

用于路径拼接,注意/的运用

(2条消息) os.path.join()函数用法详解_swan777的博客-CSDN博客

import os
path='C:/yyy/yyy_data/'
print(os.path.join(path,'/abc'))
print(os.path.join(path,'abc'))
结果
C:/abc
C:/yyy/yyy_data/abc

4.shutil.rmtree()

递归地删除文件夹以及里面的文件

5.random.randint(start, stop)

返回指定范围内的整数

enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

6.enumerate()

四、torch函数解读

1.torch.tensor()

用来存储和变换数据

2.torch.sum()

对输入的tensor数据的某一维度求和,有两种方法,dim=0纵向求和,dim=1横向求和

(1条消息) torch.sum()、np.sum()和sum()简要介绍_np.sum torch.sum_两分先生的博客-CSDN博客

import torch
import numpy as npa = torch.tensor([[1, 2, 3], [4, 5, 6]])
b = np.array([[1, 2, 3], [4, 5, 6]])
c = [1, 2, 3, 4, 5, 6]print(torch.sum(a))
print(torch.sum(a, dim=0))
print(torch.sum(a, dim=1))
print(torch.sum(a, dim=1, keepdim=True))print(np.sum(b))
print(np.sum(b, axis=0))
print(np.sum(b, axis=1))
print(np.sum(b, axis=1, keepdims=True))print(sum(c))
print(sum(c, 1))
print(sum(c, 2))结果
tensor(21)
tensor([5, 7, 9])
tensor([ 6, 15])
tensor([[ 6],[15]])
21
[5 7 9]
[ 6 15]
[[ 6][15]]
21
22
23

3.torch.mul(a, b)

矩阵a和b对应位相乘,a和b的维度必须相等,比如a的维度是(1, 2),b的维度是(1, 2),返回的仍是(1, 2)的矩阵;

(1条消息) Pytorch矩阵乘法之torch.mul() 、 torch.mm() 及torch.matmul()的区别_irober的博客-CSDN博客

a = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(a[:, :])#获取矩阵的全部值
l_x = a[:, :].mul(a[:, :])#矩阵对应位相乘
print(l_x)结果
tensor([[1, 2, 3],[4, 5, 6]])
tensor([[ 1,  4,  9],[16, 25, 36]])

4.torch.zeros()

返回一个由标量值0填充的张量

>>> torch.zeros(2, 3)
tensor([[ 0.,  0.,  0.],[ 0.,  0.,  0.]])>>> torch.zeros(5)
tensor([ 0.,  0.,  0.,  0.,  0.])

5.torch.device()

代表将torch.tensor分配到的设备的对象(简单点说,就是分配到你的CPU还是GPU上,以及哪块GPU上)

6.lambda

函数的简化,可以直接赋给变量并调用

细说Python的lambda函数用法,建议收藏 - 知乎 (zhihu.com)

import torch
c=lambda x,y,z:x*y*z
print(c(2,3,4))
结果
24

7.torch.utils.data.DataLoader()

将数据加载到模型

(2条消息) PyTorch学习笔记(6)——DataLoader源代码剖析_sooner高的博客-CSDN博客_woker_init_fn

8.Tensorboard:SummaryWriter类

可以看训练过程中loss的变化。之前用于Tensorflow框架,自Pytorch1.1之后,Pytorch也加了这个功能

writer1=SummaryWriter('runs/exp')#将loss值存储到此路径中

Pytorch深度学习实战教程(四):必知必会的炼丹法宝 - 知乎 (zhihu.com)

9.torch.optim.SGD()

随机梯度下降算法,parameters为待优化参数的iterable(w和b的迭代),lr为学习率

optim.SGD(pnet.parameters(), lr=opt.lr, momentum=opt.momentum)

(3条消息) torch.optim.SGD()_echo_gou的博客-CSDN博客_torch.optim.sgd

10.torch.optim.lr_scheduler

torch.optim.lr_scheduler模块提供了一些根据epoch训练次数来调整学习率(learning rate)的方法。一般情况下我们会设置随着epoch的增大而逐渐减小学习率从而达到更好的训练效果。

常见的调整策略:

史上最全学习率调整策略lr_scheduler - cwpeng - 博客园 (cnblogs.com)

相关文章:

Python基础及函数解读(深度学习)

一、语句1.加注释单行注释:(1)在代码上面加注释: # 后面跟一个空格(2)在代码后面加注释:和代码相距两个空格, # 后面再跟一个空格多行注释:按住shift 点击三次"&am…...

车道线检测-PolyLaneNet 论文学习笔记

论文:《PolyLaneNet: Lane Estimation via Deep Polynomial Regression》代码:https://github.com/lucastabelini/PolyLaneNet地址:https://arxiv.org/pdf/2004.10924.pdf参考:https://blog.csdn.net/sinat_17456165/article/deta…...

GO——接口(下)

接口接口值警告:一个包含空指针值的接口不是nil接口sort.Interface接口http.Handler接口类型断言类型分支接口值 接口值,由两个部分组成,一个具体的类型和那个类型的值。它们被称为接口的动态类型和动态值。对于像Go语言这种静态类型的语言&…...

计算机网络之http02| HTTPS HTTP1.1的优化

post与get请求的区别 get 是获取资源,Post是向指定URI提交资源,相关信息放在body里 2.http有哪些优点 (1)简单 报文只有报文首部和报文主体,易于理解 (2)灵活易拓展 URI相应码、首部字段都没有…...

基于matlab使用神经网络清除海杂波

一、前言此示例演示如何使用深度学习工具箱™训练和评估卷积神经网络,以消除海上雷达 PPI 图像中的杂波返回。深度学习工具箱提供了一个框架,用于设计和实现具有算法、预训练模型和应用程序的深度神经网络。二、数据集该数据集包含 84 对合成雷达图像。每…...

每天10个前端小知识 【Day 8】

前端面试基础知识题 1. Javascript中如何实现函数缓存?函数缓存有哪些应用场景? 函数缓存,就是将函数运算过的结果进行缓存。本质上就是用空间(缓存存储)换时间(计算过程), 常用于…...

【项目精选】基于Java的敬老院管理系统的设计和实现

本系统主要是针对敬老院工作人员即管理员和员工设计的。敬老院管理系统 将IT技术为养老院提供一个接口便于管理信息,存储老人个人信息和其他信息,查找 和更新信息的养老院档案,节省了员工的劳动时间,大大降低了成本。 其主要功能包括: 系统管理员用户功能介绍&#…...

Spark SQL 介绍

文章目录Spark SQL1、Hive on SparkSQL2、SparkSQL 优点3、SparkSQL 特点1) 容易整合2) 统一的数据访问3) 兼容 Hive4) 标准的数据连接4、DataFrame 是什么5、DataSet 是什么Spark SQL Spark SQL 是 Spark 用于结构化数据(structured data) 处理的Spark模块。 1、Hive on Spa…...

升级到 CDP 后Hive on Tez 性能调整和故障排除指南

优化Hive on Tez查询永远不能以一种万能的方法来完成。查询的性能取决于数据的大小、文件类型、查询设计和查询模式。在性能测试期间,要评估和验证配置参数和任何 SQL 修改。建议在工作负载的性能测试期间一次进行一项更改,并且最好在生产环境中使用它们…...

理解HDFS工作流程与机制,看这篇文章就够了

HDFS(The Hadoop Distributed File System) 是最初由Yahoo提出的分布式文件系统,它主要用来: 1)存储大数据 2)为应用提供大数据高速读取的能力 重点是掌握HDFS的文件读写流程,体会这种机制对整个分布式系统性能提升…...

Intel处理器分页机制

分页模式 Intel 64位处理器支持3种分页模式: 32-bit分页PAE分页IA-32e分页 32-bit分页 32-bit分页模式支持两种页面大小:4KB以及4MB。 4KB页面的线性地址转换 4MB页面的线性地址转换 PAE分页模式 PAE分页模式支持两种页面大小:4KB以及…...

Linux常用命令

linux常用命令创建一个目录mkdir 命令可以创建新目录。mkdir 是 make directory 的缩写。[rootiZ2ze66tzux2otcpbvie88Z ~]# ls [rootiZ2ze66tzux2otcpbvie88Z ~]# mkdir web [rootiZ2ze66tzux2otcpbvie88Z ~]# ls web [rootiZ2ze66tzux2otcpbvie88Z ~]# 创建一个文件2.1 在 Li…...

基于STM32设计的音乐播放器

一、项目背景与设计思路 1.1 项目背景 时代进步,科学技术的不断创新,促进电子产品的不断更迭换代,各种新功能和新技术的电子产品牵引着消费者的眼球。人们生活水平的逐渐提高,对娱乐消费市场需求日益扩大,而其消费电子产品在市场中的占有份额越来越举足轻重。目前消费电…...

微服务开发

目录 微服务配置管理 权限认证 批处理 定时任务 异步 微服务调用 (协议)...

【(C语言)数据结构奋斗100天】二叉树(上)

【(C语言)数据结构奋斗100天】二叉树(上) 🏠个人主页:泡泡牛奶 🌵系列专栏:数据结构奋斗100天 本期所介绍的是二叉树,那么什么是二叉树呢?在知道答案之前,请大家思考一下…...

Java 验证二叉搜索树

验证二叉搜索树中等给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。有效 二叉搜索树定义如下:节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。示例 1&…...

C/C++单项选择题标准化考试系统[2023-02-09]

C/C单项选择题标准化考试系统[2023-02-09] ©3.17 单项选择题标准化考试系统 【难度系数】5级 【任务描述】 设计一个单项选择题的考试系统,可实现试题维护、自动组卷等功能。 【功能描述】 (1)管理员功能: 试题管理:每个试题包括题干、四个备选答案标准答案…...

爱了爱了,这些顶级的 Python 工具包太棒了

Python 语言向来以丰富的第三方库而闻名,今天来介绍几个非常nice的库,有趣好玩且强大!推荐好好学习。 文章目录技术交流数据采集AKShareTuShareGoPUPGeneralNewsExtractor爬虫playwright-pythonawesome-python-login-modelDecryptLoginScylla…...

【Explain详解与索引优化最佳实践】

摘要 explain命令是查看MySQL查询优化器如何执行查询的主要方法,可以很好的分析SQL语句的执行情况。每当遇到执行慢(在业务角度)的SQL,都可以使用explain检查SQL的执行情况,并根据explain的结果相应的去调优SQL等。 …...

【树和二叉树】数据结构二叉树和树的概念认识

前言:在之前,我们已经把栈和队列的相关概念以及实现的方法进行了学习,今天我们将认识一个新的知识“树”!!! 目录1.树概念及结构1.1树的概念1.2树的结构1.3树的相关概念1.4 树的表示1.5 树在实际中的运用&a…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...