Python统计中文词频的四种方法
统计中文词频是Python考试中常见的操作,由于考察内容较多,因此比较麻烦,那么有没有好的方法来实现呢?今天,我们总结了四种常见的中文词频统计方法,并列出代码,供大家学习参考。
中文词频统计主要是通过open()打开文本,然后read()方法读取后,采用结巴分词(jieba)模块进行分词,接着用推表推导式、Counter或者是字典的方法来统计词频,也可以采用NLTK的方法,最后格式化打印出来。
题目:统计中文文本文件【词频统计文本.txt】中长度大于1的词的词频,然后打印出词频数最高的10个词。
默认系统里已经安装好了jieba这个模块。如果还没有安装,可以在cmd下通过pip install jieba来安装这个模块。
一、字典法——常用的方法
先读取文本,然后jieba分词,再对分词后的列表进行遍历,然后用字典统计词频。这里排除了单个词,代码如下:
import jieba
txt = open("词频统计文本.txt", "r").read()
words = jieba.lcut(txt)
counts = {}
for word in words:if len(word) == 1: #排除单个字符的分词结果continueelse:counts[word] = counts.get(word,0) + 1
items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(10):word, count = items[i]print("{0:<10}{1:>5}".format(word,count))
print ('已统计数量排前10的词')
二、Counter法——代码简单,速度快
先生成Counter对象,再排序,最后再打印出来。这里我们使用了most_common的方法,代码更为简洁,更好理解一点。代码如下:
import jieba
from collections import Counter
with open("词频统计文本.txt", "r",encoding="utf-8") as f:words = jieba.lcut(f.read())words = [item for item in words if len(item)>1]
counts = Counter(words)
for word,count in counts.most_common(10):print(word,count)
print ('已统计数量排前10的词')
三、NLTK方法——有点儿小麻烦
利用列表推导式筛选列表,利用NLTK中的FreqDist来统计列表中的词步,代码如下。
import jieba,os
from nltk.probability import FreqDist
with open("词频统计文本.txt","r",encoding="utf-8") as f:text = f.read()
words = jieba.lcut(text)
lst = [i for i in words if len(i)>1]
freq = FreqDist(lst)
for item in freq.most_common(10):word,count=itemprint(f"{word:<10}\t{count:<5}")
print ('已统计数量排前10的词')
使用这种方法,得安装nltk包,较为麻烦。
四、列表推导式法
如果不借助其它包,我们可以充分利用Python自带的count方法和列表推导式,实现词频的统计。这其中与前面排序的方法不同的是,我们采用了sorted的方法,完整代码如下:
import jieba,os
with open("词频统计文本.txt","r",encoding="utf-8") as f:text = f.read()
words = jieba.lcut(text)
lst = [(key,words.count(key)) for key in set(words) if len(key)>1]
items = sorted(lst,key=lambda x:x[1],reverse=True)
for i in range(10):word, count = items[i]if len(word) == 1: #排除单个字符的分词结果continueelse:print(f"{word:<10}\t{count:<5}")
print ('已统计数量排前10的词')
五、学后反思
1. 中文词频统计主要考察文本的读取、列表的遍历、jieba分词、词频统计、排序、结果的格式化和打印输出等综合能力。因此,它是Python二级中常考的题目,认真学习,并找出多种词频统计的方法可以更好地理解Python中的相关概念和基础语法知识。
2. 四种方法中最麻烦的是NLTK法和列表推导式化,字典法和Counter方法最为常用,字典法常出现在考试中,而Counter的方法实用性更强,大家可以有选择地使用。
3. 有了词频表,后续可以进行可视化的图表生成,包括词云图和线形图等,以便更直观地观察语篇中词的特点。
相关文章:
Python统计中文词频的四种方法
统计中文词频是Python考试中常见的操作,由于考察内容较多,因此比较麻烦,那么有没有好的方法来实现呢?今天,我们总结了四种常见的中文词频统计方法,并列出代码,供大家学习参考。 中文词频统计主…...
sql server 快速安装
目录标题 一、下载二、直接选择基本安装二、下载ssms(数据库图形化操作页面)三、开启sa账号认证(一)第一步:更改身份验证模式(二)第二步:启用 sa 登录四、开启tcp/ip 一、下载 下载…...
机器学习之损失函数
深度学习中常用的损失函数多种多样,具体选择取决于任务类型和问题的性质。以下是一些常见的深度学习任务和相应的常用损失函数: 分类任务: 交叉熵损失函数(Cross-Entropy Loss):用于二分类和多类别分类任务…...
nacos适配SqlServer、Oracle
继上文《nacos适配达梦、瀚高、人大金仓数据库及部分源码探究 》后补充nacos适配SqlServer、Oracle的贴码,主要区别是SqlServer、Oracle的分页SQL有点不一样,做个记录; SqlServer的分页有三种实现方式:offset /fetch next、利用ma…...
力扣:74. 搜索二维矩阵(Python3)
题目: 给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非递减顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返…...
CPU、MCU、MPU、SOC、SOCPC、概念解释之在嵌入式领域常听到的名词含义
CPU、MCU、MPU、SOC等几个在嵌入式领域学习过程中会涉及到的几个名词。我们来学习一下,资料从网上搜集的,有错的地方可以指出。。。 CPU、MCU、MPU、SOC、SOCPC、 1. CPU2. MPU3.MCUMPU和MCU的区别:4.SOC5. SoPC 1. CPU CPU,即中…...
每日两题 111二叉树的最小深度 112路径总和(递归)
111 题目 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:2示例 2&#x…...
实训笔记8.24
实训笔记8.24 8.24笔记一、Sqoop数据迁移工具1.1 Sqoop的基本概念1.2 Sqoop的基本操作1.2.1 命令语法1.2.2 list-databases1.2.3 list-tables1.2.3 eval1.2.4 import1.2.5 export1.2.6 导入 二、Flume日志采集工具2.1 数据采集的问题2.2 数据采集一般使用的技术2.3 扩展&#x…...
Linux下的系统编程——系统调用(五)
前言: 由操作系统实现并提供给外部应用程序的编程接口。(Application Programming Interface,API)。系统调用就是应用程序同系统之间数据交互的桥梁。 open/close函数 1.open函数: (1)int open(char *pathname, int flags) …...
动物体外受精手术VR模拟仿真培训系统保证学生及标本的安全
奶牛是养殖业主要的资源,因此保证奶牛的健康对养殖业的成功和可持续发展具有重要已用,奶牛有一些常见易发病,一旦处理不当,对奶牛业都会造成较大的经济损失,传统的奶牛手术培训实操难度大、风险高且花费大,…...
微信小程序|步骤条
步骤条是现代用户界面设计中常见的元素之一,它能够引导用户按照预定顺序完成一系列任务或步骤。在小程序中,实现步骤条可以为用户提供更好的导航和引导,使用户体验更加流畅和直观。本文将介绍如何在小程序中实现步骤条,并逐步展示实现的过程和关键技巧 目录 步骤条的作用及…...
如何才能设计出“好的”测试用例?
软件测试用例的设计质量直接影响到测试的完整性、有效性以及自动化测试的实施效果,是软件测试成功的重要保证,良好的软件测试用例对于提高测试的有效性和效率至关重要。那大家知道好的测试用例该怎么写吗?应该从哪几个方面来撰写呢࿱…...
DirectExchange直连交换机
目录 一、简介 二、使用步骤 三、demo 父pom文件 pom文件 配置文件 config 消费者 生产者 测试 一、简介 直连型交换机,根据消息携带的路由键将消息投递给对应队列。 大致流程,有一个队列绑定到一个直连交换机上,同时赋予一个路由…...
Shell 编程:探索 Shell 的基本概念与用法
目录 Shell 简介 Shell 脚本 Shell 脚本运行 Shell 变量 1、创建变量和赋值 2、引用变量 3、修改变量的值 4、只读变量 5、删除变量 6、环境变量 Shell 字符串操作 1、拼接字符串 2、字符串长度 3、字符串截取 Shell 数组 1、创建数组 2、访问数组元素 shell …...
【Git分支操作---讲解二】
Git分支操作---讲解二 查看分支创建分支切换分支修改分支切换分支合并分支合并分支【冲突】(只会修改主分支不会修改其他分支)什么时候会有冲突? 查看分支 创建分支 切换分支 修改分支 切换分支 合并分支 合并分支【冲突】(只会修改主分支不会修改其他分支) 什么时…...
vue2+qrcodejs2+clipboard——实现二维码展示+下载+复制到剪切板——基础积累
最近在写后台管理系统时,遇到一个需求就是要实现二维码的展示下载复制到剪切板。 效果图如下: 1.二维码展示下载功能——qrcodejs20.0.2 我是安装的qrcodejs20.0.2,指定了具体的版本号,也可以安装默认的当前稳定版本࿰…...
【PHP】echo 输出数组报Array to string conversion解决办法
代码: <?PHP echo "Hello World!";$demoName array("kexuexiong","xiong");echo "<pre>";var_dump($demoName);echo $demoName; print_r($demoName);echo "</pre>"; ?>输出结果࿱…...
Arduino驱动MiCS-4514气体传感器(气体传感器篇)
目录 1、传感器特性 2、控制器和传感器连线图 3、驱动程序...
marked在vue项目中改变超链接跳转方式和图片放大预览
marked在vue项目中改变超链接跳转方式和图片放大预览 这里我是另起一个js文件对marked的配置做了修改,参考如下 import marked from marked let renderer new marked.Renderer() const linkRenderer renderer.link const imgRenderer renderer.image // 超链接…...
leetcode485. 最大连续 1 的个数
思路:【双指针】 left左边界,right往右跑遇到0,则计算该长度。并更新cnt(最大连续1个数)。 class Solution { public:int findMaxConsecutiveOnes(vector<int>& nums) {int left 0, right 0;int cnt 0;…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
