铰接式车辆的横向动力学仿真提供车辆模型研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
铰接式车辆是一种具有铰接连接的多体系统,具有特殊的动力学行为。进行铰接式车辆的横向动力学仿真研究可以遵循以下步骤:
1. 定义车辆模型:首先建立铰接式车辆的几何模型,并定义车辆的基本参数,如质量、惯性特性、轮胎参数等。可以使用计算机辅助设计软件(如AutoCAD)或专业的车辆仿真软件(如CarSim、ADAMS等)创建车辆的3D几何模型。
2. 车辆动力学模型:根据车辆几何模型和运动学原理,建立车辆的动力学模型。通常使用多体动力学原理描述车辆的运动,包括刚体运动学和运动学方程。可以使用拉格朗日方程或牛顿-欧拉方程等动力学方法建立车辆的运动学和动力学方程。
3. 轮胎模型:根据车辆使用的轮胎类型,选择合适的轮胎力学模型。常见的轮胎模型包括线性模型、Magic Formula模型等。根据轮胎模型的参数,计算轮胎的侧向力和纵向力。
4. 驱动和操纵控制模型:定义车辆的驱动和操纵控制系统模型,包括驱动力和转向力的输入模型。根据驾驶策略和控制算法,生成对应的引擎扭矩和转向角信号,用于驱动和操纵车辆。
5. 数值求解:设定仿真的时间步长,并使用数值方法(如欧拉法、龙格-库塔法等)对车辆的动力学方程进行求解。在每个时间步长内,使用车辆的输入模型、轮胎模型和操纵控制模型,计算车辆的状态和响应。
6. 仿真结果评估:通过分析仿真结果,得到车辆的横向动力学响应,包括车辆的侧向运动、横向力、滑移角等。评估车辆的稳定性和控制性能,分析车辆参数和控制策略对横向动力学的影响。
7. 结果解释和报告:根据仿真结果,撰写研究报告或技术论文,包括车辆的模型建立、仿真方法、参数分析和结论等。
需要指出的是,进行铰接式车辆的横向动力学仿真需要熟悉车辆动力学原理和相关仿真工具。为了获得精确和可靠的仿真结果,建议使用专业的车辆仿真软件,并根据具体的研究目的和问题,选择合适的车辆模型和控制策略进行仿真研究。
📚2 运行结果
部分代码:
%% Maneuver
% The maneuver to be estimated by the Kalman Filter is defined here.
%
% Choosing simulation parameters:
%
T = 6; % Total simulation time [s]
resol = 50; % Resolution
TSPAN = 0:T/resol:T; % Time span [s]
%%
% Running simulation.
%
simulatorPlant = Simulator(VehiclePlant, TSPAN);
simulatorPlant.dPSI0 = 0.35;
simulatorPlant.Simulate
%%
% Printing simulation parameters.
%
disp(simulatorPlant)
%%
% Retrieving states
%
XTPlant = simulatorPlant.XT;
YTPlant = simulatorPlant.YT;
PSIPlant = simulatorPlant.PSI;
vTPlant = simulatorPlant.VEL;
ALPHATPlant = simulatorPlant.ALPHAT;
dPSIPlant = simulatorPlant.dPSI;
XOUTPlant = [XTPlant YTPlant PSIPlant vTPlant ALPHATPlant dPSIPlant];
%%
% Generating graphics of the vehicle in the considered maneuver (plant)
%
gPlant = Graphics(simulatorPlant);
gPlant.TractorColor = 'r';
gPlant.Frame();
%%
%
close all % Closing figures
%
% Inicializando o pneu
%
TireModel = TireLinear;
disp(TireModel)
%%
% Choosing model vehicle
%
VehicleModel = VehicleSimpleNonlinear; % Same as plant
VehicleModel.tire = TireModel;
disp(VehicleModel)
%%
% Simulador com o mesmo vetor TSPAN e simula玢o
%
simulatorModel = Simulator(VehicleModel, TSPAN);
simulatorModel.dPSI0 = 0.35;
simulatorModel.Simulate;
disp(simulatorModel)
%%
% Retrieving states
%
XTModel = simulatorModel.XT;
YTModel = simulatorModel.YT;
PSIModel = simulatorModel.PSI;
vTModel = simulatorModel.VEL;
ALPHATModel = simulatorModel.ALPHAT;
dPSIModel = simulatorModel.dPSI;
%
gModel = Graphics(simulatorModel);
gModel.TractorColor = 'g';
gModel.Frame();
%%
%
close all % Closing figures
%% Plant and model comparison
% Comparando o modelo de pneu
%
g = 9.81;
FzF = VehiclePlant.mF0*g;
FzR = VehiclePlant.mR0*g;
muy = VehiclePlant.muy;
nF = VehiclePlant.nF;
nR = VehiclePlant.nR;
alpha = 0:0.5:15;
alpha = alpha*pi/180;
FyLin = - TireModel.Characteristic(alpha);
FyFPac = - TirePlant.Characteristic(alpha, FzF, muy);
FyRPac = - TirePlant.Characteristic(alpha, FzR, muy);
figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(alpha(1:floor(end/2))*180/pi,FyLin(1:floor(end/2)),'r')
plot(alpha*180/pi,FyFPac,'g')
plot(alpha*180/pi,FyRPac,'g--')
xlabel('alpha [deg]')
ylabel('Fy [N]')
l = legend('Linear','Pacejka F','Pacejka R');
set(l,'Location','SouthEast')
%%
% Comparando os estados
figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,XTPlant,'r')
plot(TSPAN,XTModel,'r--')
xlabel('Time [s]')
ylabel('Distance X [m]')
figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,YTPlant,'g')
plot(TSPAN,YTModel,'g--')
xlabel('Time [s]')
ylabel('Distance Y [m]')
figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,PSIPlant,'b')
plot(TSPAN,PSIModel,'b--')
xlabel('Time [s]')
ylabel('PSI [rad]')
figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,vTPlant,'c')
plot(TSPAN,vTModel,'c--')
xlabel('Time [s]')
ylabel('vT [m/s]')
figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,ALPHATPlant,'m'),
plot(TSPAN,ALPHATModel,'m--'),
xlabel('Time [s]')
ylabel('ALPHAT [rad/s]')
figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,dPSIPlant,'k')
plot(TSPAN,dPSIModel,'k--')
xlabel('Time [s]')
ylabel('dPSI [rad/s]')
%%
% Comparando a acelera玢o longitudinal e transversal
saidasPlant = [XTPlant YTPlant PSIPlant vTPlant ALPHATPlant dPSIPlant];
matDerivEstadosPlant = zeros(size(saidasPlant));
for i = 1:size(saidasPlant,1)
auxil = simulatorPlant.Vehicle.Model(1,saidasPlant(i,:),TSPAN);
matDerivEstadosPlant(i,:) = auxil';
end
dXTPlant = matDerivEstadosPlant(:,1);
dYTPlant = matDerivEstadosPlant(:,2);
dPSIPlant = matDerivEstadosPlant(:,3);
dvTPlant = matDerivEstadosPlant(:,4);
dALPHATPlant = matDerivEstadosPlant(:,5);
ddPSIPlant = matDerivEstadosPlant(:,6);
ddXPlant = dvTPlant.*cos(PSIPlant + ALPHATPlant) - vTPlant.*(dPSIPlant + dALPHATPlant).*sin(PSIPlant + ALPHATPlant);
ddYPlant = dvTPlant.*sin(PSIPlant + ALPHATPlant) + vTPlant.*(dPSIPlant + dALPHATPlant).*cos(PSIPlant + ALPHATPlant);
ACELNumPlant = [(ddXPlant.*cos(PSIPlant) - ddYPlant.*sin(PSIPlant)) (-ddXPlant.*sin(PSIPlant) + ddYPlant.*cos(PSIPlant))];
saidasModel = [XTModel YTModel PSIModel vTModel ALPHATModel dPSIModel];
matDerivEstadosModel = zeros(size(saidasModel));
for i = 1:size(saidasModel,1)
auxil = simulatorModel.Vehicle.Model(1,saidasModel(i,:),TSPAN);
matDerivEstadosModel(i,:) = auxil';
end
dXTModel = matDerivEstadosModel(:,1);
dYTModel = matDerivEstadosModel(:,2);
dPSIModel = matDerivEstadosModel(:,3);
dvTModel = matDerivEstadosModel(:,4);
dALPHATModel = matDerivEstadosModel(:,5);
ddPSIModel = matDerivEstadosModel(:,6);
ddXModel = dvTModel.*cos(PSIModel + ALPHATModel) - vTModel.*(dPSIModel + dALPHATModel).*sin(PSIModel + ALPHATModel);
ddYModel = dvTModel.*sin(PSIModel + ALPHATModel) + vTModel.*(dPSIModel + dALPHATModel).*cos(PSIModel + ALPHATModel);
ACELNumModel = [(ddXModel.*cos(PSIModel) - ddYModel.*sin(PSIModel)) (-ddXModel.*sin(PSIModel) + ddYModel.*cos(PSIModel))];
figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,ACELNumPlant(:,1),'r')
plot(TSPAN,ACELNumPlant(:,2),'g')
plot(TSPAN,ACELNumModel(:,1),'r--')
plot(TSPAN,ACELNumModel(:,2),'g--')
xlabel('time [s]')
ylabel('acc. [m/s]')
l = legend('AX Plant','AY Plant','AX Model','AY Model');
set(l,'Location','NorthEast')
%%
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]农思赢.铰接式车辆与俄军北极战役集群[J].坦克装甲车辆,2022(05):56-61.DOI:10.19486/j.cnki.11-1936/tj.2022.05.003.
[2]宋广昊. 铰接式车辆紧急变道避障控制策略研究[D].吉林大学,2021.DOI:10.27162/d.cnki.gjlin.2021.001808.
[3].采用DT-30PM铰接式车辆底盘的俄罗斯“雷神”M2DT防空导弹系统[J].坦克装甲车辆,2017(11):73.
🌈4 Matlab代码实现
相关文章:

铰接式车辆的横向动力学仿真提供车辆模型研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

Ubuntu20 安装 libreoffice
1 更新apt-get sudo apt-get update2 安装jdk 查看jdk安装情况 Command java not found, but can be installed with:sudo apt install default-jre # version 2:1.11-72, or sudo apt install openjdk-11-jre-headless # version 11.0.138-0ubuntu1~20.04 sud…...

HTTP协议(JavaEE初阶系列15)
目录 前言: 1.HTTP协议 1.1HTTP协议是什么 1.2HTTP协议的报文格式 1.2.1抓包工具的使用 1.2.2HTTP请求 1.2.3HTTP响应 2.HTTP请求 2.1首行的组成 2.2.1URL的组成 2.2认识“方法”(method) 2.2.1GET方法 2.2.2POST方法 2.2.3GET…...
机器学习基础10-审查回归算法(基于波士顿房价的数据集)
上一节介绍了如何审查分类算法,并介绍了六种不同的分类算法,还 用同一个数据集按照相同的方式对它们做了审查,本章将用相同的方式对回归算法进行审查。 在本节将学到: 如何审查机器学习的回归算法。如何审查四种线性分类算法。如…...
基于 CentOS 7 构建 LVS-DR 群集。配置nginx负载均衡。
1、基于 CentOS 7 构建 LVS-DR 群集。 [root132 ~]# nmcli c show NAME UUID TYPE DEVICE ens33 c89f4a1a-d61b-4f24-a260-6232c8be18dc ethernet ens33 [root132 ~]# nmcli c m ens33 ipv4.addresses 192.168.231.200/24 [r…...

【云原生】Docker的数据管理(数据卷、容器互联)
目录 一、数据卷(容器与宿主机之间数据共享) 二、数据卷容器(容器与容器之间数据共享) 三、 容器互联(使用centos镜像) 总结 用户在使用Docker的过程中,往往需要能查看容器内应用产生的数据…...

使用vlc在线播放rtsp视频url
1. 2. 3. 工具链接: https://download.csdn.net/download/qq_43560721/88249440...

copy is all you need前向绘图 和疑惑标记
疑惑的起因 简化前向图 GPT4解释 这段代码实现了一个神经网络模型,包含了BERT、GPT-2和MLP等模块。主要功能是给定一个文本序列和一个查询序列,预测查询序列中的起始和结束位置,使其对应文本序列中的一个短语。具体实现细节如下:…...

【附安装包】Vred2023安装教程
软件下载 软件:Vred版本:2023语言:简体中文大小:2.39G安装环境:Win11/Win10/Win8/Win7硬件要求:CPU2.0GHz 内存4G(或更高)下载通道①百度网盘丨64位下载链接:https://pan.baidu.com…...
ASP.NET Core 中的 Dependency injection
依赖注入(Dependency Injection,简称DI)是为了实现各个类之间的依赖的控制反转(Inversion of Control,简称IoC )。 ASP.NET Core 中的Controller 和 Service 或者其他类都支持依赖注入。 依赖注入术语中&a…...

优化物料编码规则,提升物料管理效率
导 读 ( 文/ 2358 ) 物料是生产过程的必需品。对物料进行身份的唯一标识,可以更好的管理物料库存、库位,更方便的对物料进行追溯。通过编码规则的设计,可以对物料按照不同的属性、类别或特征进行分类,从而更好地进行库存分析、计划…...

Jetbrains IDE新UI设置前进/后退导航键
背景 2023年6月,Jetbrains在新发布的IDE(Idea、PyCharm等)中开放了新UI选项,我们勾选后重启IDE,便可以使用这一魔性的UI界面了。 但是前进/后退这对常用的导航键却找不到了,以前的设置方式(Vi…...

借助frp的xtcp+danted代理打通两边局域网p2p方式访问
最终效果 实现C内网所有设备借助c1内网代理访问B内网所有服务器 配置公网服务端A frps 配置frps.ini [common] # 绑定frp穿透使用的端口 bind_port 7000 # 使用token认证 authentication_method token token xxxx./frps -c frps.ini启动 配置service自启(可选) /etc/…...

2023年高教社杯数学建模思路 - 案例:FPTree-频繁模式树算法
文章目录 算法介绍FP树表示法构建FP树实现代码 建模资料 ## 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,…...
批量根据excel数据绘制饼状图
要使用Python批量根据Excel数据绘制饼状图,可以使用pandas和matplotlib库来实现。以下是一个基本的代码示例: import pandas as pd import matplotlib.pyplot as plt # 读取Excel文件 data pd.read_excel(data.xlsx) # 提取需要用于绘制饼状图的数据列…...

C++头文件和std命名空间
C 是在C语言的基础上开发的,早期的 C 还不完善,不支持命名空间,没有自己的编译器,而是将 C 代码翻译成C代码,再通过C编译器完成编译。 这个时候的 C 仍然在使用C语言的库,stdio.h、stdlib.h、string.h 等头…...
浏览器有哪几种缓存?各种缓存之间的优先级
在浏览器中,有以下几种常见的缓存: 1、强制缓存:通过设置 Cache-Control 和 Expires 等响应头实现,可以让浏览器直接从本地缓存中读取资源而不发起请求。2、协商缓存:通过设置 Last-Modified 和 ETag 等响应头实现&am…...

【C++】list
list 1. 简单了解list2. list的常见接口3. 简单实现list4. vector和list比较 1. 简单了解list list的底层是带头双向循环列表。因此list支持任意位置的插入和删除,且效率较高。但其缺陷也很明显,由于各节点在物理空间是不连续的,所以不支持对…...

剪枝基础与实战(2): L1和L2正则化及BatchNormalization讲解
1. CIFAR10 数据集 CIFAR10 是深度学习入门最先接触到的数据集之一,主要用于图像分类任务中,该数据集总共有10个类别。 图片数量:6w 张图片宽高:32x32图片类别:10Trainset: 5w 张,5 个训练块Testset: 1w 张,1 个测试块Pytorch 集成了很多常见数据集的API, 可以通过py…...
C语言学习笔记---指针进阶01
C语言程序设计笔记---016 C语言指针进阶前篇1、字符指针2、指针数组2.1、指针数组例程1 -- 模拟一个二维数组2.2、指针数组例程2 3、数组指针3.1、回顾数组名?3.2、数组指针定义与初始化(格式)3.3、数组指针的作用 --- 常用于二维数组3.4、数…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...

Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...

jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...

密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...

aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...