当前位置: 首页 > news >正文

c# 访问sqlServer数据库时的连接字符串

//sql server 身份验证的场合, 连接字符串

private string ConnstrSqlServer = "server=服务器名称;uid=登录名称;pwd=登录密码;database=数据库名称";

//windows 身份验证连接字符串

private string ConnstrWindows = "server=服务器名称;database=数据库名称;Trusted_Connection=SSPI";

  

// C# 代码中用 SqlClient 的方式访问 SQL Server 2008 数据库    
   
// .NET Framework Data Provider for SQL Server 标准写法    
Data Source=myServerAddress;Initial Catalog=myDataBase;User Id=myUsername;Password=myPassword;    
   
// .NET Framework Data Provider for SQL Server 另一种标准写法    
Server=myServerAddress;Database=myDataBase;User ID=myUsername;Password=myPassword;Trusted_Connection=False;    
   
// .NET Framework Data Provider for SQL Server 信任连接写法    
Data Source=myServerAddress;Initial Catalog=myDataBase;Integrated Security=SSPI;    
   
// .NET Framework Data Provider for SQL Server 信任连接另一种写法    
Server=myServerAddress;Database=myDataBase;Trusted_Connection=True;

相关文章:

c# 访问sqlServer数据库时的连接字符串

//sql server 身份验证的场合, 连接字符串 private string ConnstrSqlServer "server服务器名称;uid登录名称;pwd登录密码;database数据库名称"; //windows 身份验证连接字符串 private string ConnstrWindows "server服务器名称;database数据库…...

排序算法概述

1.排序算法分类 **比较类算法排序:**通过比较来决定元素的时间复杂度的相对次序,由于其时间复杂度不能突破 O ( n l o g n ) O(nlogn) O(nlogn),因此也称为非线性时间比较类算法 **非比较类算法排序:**不通过比较来决定元素间的…...

ChatGPT在高等教育中的应用利弊探讨

​人工智能在教育领域的应用日益广泛。2022年11月OpenAI开发的聊天机器人ChatGPT在全球范围内流传开来,其中用户数量最多的国家是美国(15.22%)。由于ChatGPT应用广泛,具有类似人类回答问题的能力,它正在成为许多学生和教育工作者的可信赖伙伴…...

Java之API详解之Runtime的详细解析

3.1 概述 Runtime表示Java中运行时对象,可以获取到程序运行时设计到的一些信息 3.2 常见方法 常见方法介绍 我们要学习的Object类中的常见方法如下所示: public static Runtime getRuntime() //当前系统的运行环境对象 public void exit(int statu…...

机器学习之softmax

Softmax是一个常用于多类别分类问题的激活函数和归一化方法。它将一个向量的原始分数(也称为 logits)转换为概率分布,使得每个类别的概率值在0到1之间,同时确保所有类别的概率之和等于1。Softmax函数的定义如下: 对于…...

npm script命令

1 串行/并行执行命令 //串行 npm-run-all text test npm run text && npm run test //并行改成& npm-run-all --parallel text test npm run text & npm run test2 传递参数 {"lint": "eslint js/*.js","lint:fix"&#xff1a…...

【力扣周赛】第360场周赛

【力扣周赛】第360场周赛 8015.距离原点最远的点题目描述解题思路 8022. 找出美丽数组的最小和题目描述解题思路 8015.距离原点最远的点 题目描述 描述:给你一个长度为 n 的字符串 moves ,该字符串仅由字符 ‘L’、‘R’ 和 ‘_’ 组成。字符串表示你在…...

php环境变量的配置步骤

要配置PHP的环境变量,以便在命令行中直接使用php命令,以下是一般的步骤: Windows 操作系统 下载和安装PHP:首先,你需要从PHP官方网站(https://www.php.net/downloads.php)下载适用于你的操作系…...

Kdtree

Kdtree kdtree 就是在 n 维空间对数据点进行二分;具体先确定一个根,然后小于在这个维度上的根的节点在左边,大于的在右边,再进行下一个维度的划分。直到维度结束,再重复,或者直到达到了结束条件&#xff1…...

算法leetcode|74. 搜索二维矩阵(rust重拳出击)

文章目录 74. 搜索二维矩阵:样例 1:样例 2:提示: 分析:题解:rust:go:c:python:java: 74. 搜索二维矩阵: 给你一个满足下述两条属性的…...

element浅尝辄止7:InfiniteScroll 无限滚动

滚动加载&#xff1a;滚动至底部时&#xff0c;加载更多数据。 1.如何使用&#xff1f; //在要实现滚动加载的列表上上添加v-infinite-scroll&#xff0c;并赋值相应的加载方法&#xff0c; //可实现滚动到底部时自动执行加载方法。<template><ul class"infinit…...

Day05-Vue基础

Day05-Vue基础 一、单向数据流 父子组件通信。会在父组件中定义好数据,将数据传递给子组件,可以使用这个数据 Vue中针对props这个属性提出了一个单向数据流的概念。 Vue针对props做了一些限制,可以接受值,使用这个值,规范中不要去直接修改这个值 目的是为了对数据流进…...

《机器学习在车险定价中的应用》实验报告

目录 一、实验题目 机器学习在车险定价中的应用 二、实验设置 1. 操作系统&#xff1a; 2. IDE&#xff1a; 3. python&#xff1a; 4. 库&#xff1a; 三、实验内容 实验前的猜想&#xff1a; 四、实验结果 1. 数据预处理及数据划分 独热编码处理结果&#xff08;以…...

14. Docker中实现CI和CD

目录 1、前言 2、什么是CI/CD 3、部署Jenkins 3.1、下载Jenkins 3.2、启动Jenkins 3.3、访问Jenkins页面 4、Jenkins部署一个应用 5、Jenkins实现Docker应用的持续集成和部署 5.1、创建Dockerfile 5.2、集成Jenkins和Docker 6、小结 1、前言 持续集成(CI/CD)是一种…...

【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水

题目内容 喝汽水问题 喝汽水&#xff0c;1瓶汽水1元&#xff0c;2个空瓶可以换一瓶汽水&#xff0c;给20元&#xff0c;可以喝多少汽水&#xff08;编程实现&#xff09;。 题目分析 数学思路分析 根据给出的问题和引用内容&#xff0c;我们可以得出答案。 首先&#xff…...

P1591 阶乘数码(Java高精度)

题目描述 求 n ! n! n! 中某个数码出现的次数。 输入格式 第一行为 t ( t ≤ 10 ) t(t \leq 10) t(t≤10)&#xff0c;表示数据组数。接下来 t t t 行&#xff0c;每行一个正整数 n ( n ≤ 1000 ) n(n \leq 1000) n(n≤1000) 和数码 a a a。 输出格式 对于每组数据&a…...

Mybatis的动态SQL及关键属性和标识的区别(对SQL更灵活的使用)

&#xff08; 虽然文章中有大多文本内容&#xff0c;想了解更深需要耐心看完&#xff0c;必定大有受益 &#xff09; 目录 一、动态SQL ( 1 ) 是什么 ( 2 ) 作用 ( 3 ) 优点 ( 4 ) 特殊标签 ( 5 ) 演示 二、#和$的区别 2.1 #使用 ( 1 ) #占位符语法 ( 2 ) #优点 2.…...

mysql下载

网址 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 2、选择MSI进行安装 3、这里我选择离线安装 4、这里我选择直接下载 5、等待下载安装即可...

聚合函数与窗口函数

聚合函数 回答一 聚合函数&#xff08;Aggregate Functions&#xff09;是SQL中的函数&#xff0c;用于对一组数据进行计算&#xff0c;并返回单个结果。聚合函数通常用于统计和汇总数据&#xff0c;包括计算总和、平均值、计数、最大值和最小值等。 以下是一些常见的聚合函…...

c语言实现堆

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、树1、树的概念2、树的相关概念3、树的表示 二、二叉树1、二叉树概念2、特殊的二叉树3、二叉树的性质4、二叉树的顺序结构5、二叉树的链式结构 三、堆(二叉树…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发&#xff08;电脑上写的程序&#xff09;涉及到的一套技术Qt无法开发网页前端&#xff0c;也不能开发移动应用。 客户端开发的重要任务&#xff1a;编写和用户交互的界面。一般来说和用户交互的界面&#xff0c;有两种典型风格&…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...