【力扣周赛】第360场周赛
【力扣周赛】第360场周赛
- 8015.距离原点最远的点
- 题目描述
- 解题思路
- 8022. 找出美丽数组的最小和
- 题目描述
- 解题思路
8015.距离原点最远的点
题目描述
描述:给你一个长度为 n 的字符串 moves ,该字符串仅由字符 ‘L’、‘R’ 和 ‘_’ 组成。字符串表示你在一条原点为 0 的数轴上的若干次移动。
你的初始位置就在原点(0),第 i 次移动过程中,你可以根据对应字符选择移动方向:
如果 moves[i] = ‘L’ 或 moves[i] = ‘’ ,可以选择向左移动一个单位距离
如果 moves[i] = ‘R’ 或 moves[i] = '’ ,可以选择向右移动一个单位距离
移动 n 次之后,请你找出可以到达的距离原点 最远 的点,并返回 从原点到这一点的距离 。
示例 1:
输入:moves = "L_RL__R"
输出:3
解释:可以到达的距离原点 0 最远的点是 -3 ,移动的序列为 "LLRLLLR" 。
示例 2:
输入:moves = "_R__LL_"
输出:5
解释:可以到达的距离原点 0 最远的点是 -5 ,移动的序列为 "LRLLLLL" 。
示例 3:
输入:moves = "_______"
输出:7
解释:可以到达的距离原点 0 最远的点是 7 ,移动的序列为 "RRRRRRR" 。
提示:
1 <= moves.length == n <= 50
moves 仅由字符 ‘L’、‘R’ 和 ‘_’ 组成
解题思路
思路:脑筋急转弯,将直观模拟转换为求解L和R数量,因为L和R可以抵消,故可以将_转换为L和R较多的那个再进行求解。
class Solution {
public:int furthestDistanceFromOrigin(string moves) {int n=moves.size();// l表示L数量 r表示R数量int l=0,r=0;// 转化为l与r抵消剩余多少则往哪个方向移动for(auto move:moves){if(move=='R')r++;if(move=='L')l++;}return l>r?n-2*r:n-2*l;}
};
总结:首先是理解题意,然后是直观模拟,当直观模拟较为复杂,则考虑在不改变结果的情况下如何转换求解以便优化时空复杂度。
8022. 找出美丽数组的最小和
题目描述
描述:给你两个正整数:n 和 target 。
如果数组 nums 满足下述条件,则称其为 美丽数组 。
nums.length == n.
nums 由两两互不相同的正整数组成。
在范围 [0, n-1] 内,不存在 两个 不同 下标 i 和 j ,使得 nums[i] + nums[j] == target 。
返回符合条件的美丽数组所可能具备的 最小 和。
示例 1:
输入:n = 2, target = 3
输出:4
解释:nums = [1,3] 是美丽数组。
- nums 的长度为 n = 2 。
- nums 由两两互不相同的正整数组成。
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 4 是符合条件的美丽数组所可能具备的最小和。
示例 2:
输入:n = 3, target = 3
输出:8
解释:
nums = [1,3,4] 是美丽数组。
- nums 的长度为 n = 3 。
- nums 由两两互不相同的正整数组成。
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 8 是符合条件的美丽数组所可能具备的最小和。
示例 3:
输入:n = 1, target = 1
输出:1
解释:nums = [1] 是美丽数组。
提示:
1 <= n <= 105
1 <= target <= 105
解题思路
思路:最开始是一种很神奇的感觉,没有说那种脑海中浮现出很直观的清晰的逻辑思路,但是写着写着就写出来了。贪心想法,必定是按照1、2、3…n的顺序得到的数组和最小,而且1必定在结果中,所以使用uset存储已经加入结果集合,初始为1,使用num表示当前加入元素,初始为2,使用res表示当前数组和,初始为1,当在uset中找不到与num相加和为target的元素时则将num加入uset并更新数组和res。
class Solution {
public:long long minimumPossibleSum(int n, int target) {// 长度为1的数组最小为1if(n==1)return 1;// 记录元素和 1肯定在long long res=1;// 记录加入元素unordered_set<int> uset;uset.emplace(1);// 记录当前加入元素int num=2;// 1 2 3 4依次加入最小 按照target排除不能加入元素 使用uset记录已经加入元素while(uset.size()<n){if(uset.find(target-num)==uset.end()){uset.emplace(num);res+=num;}num++;}return res;}
};
优化:当时在模拟示例数据时,想到对于元素和target,在和为target的两两配对中必定选取较小的那个数,而对于大于等于target的数选择部分数使得总数据数量为n。
class Solution {
public:long long minimumPossibleSum(int n, int target) {// 第一部分:两两配对中取较小者 1、2、3...k/2 使得n>=mlong long m=min(target/2,n);// 第二部分:剩余n-m个数 k...k+n-m-1 如果最小m为n 那么后者为0return (m*(m+1)+(target*2+n-m-1)*(n-m))/2;}
};
PS:后两题不会hhh,有时候想想刷题真神奇,因为无论如何都不会到达天花板,总是会在某些题中找到无力感和挫败感,但是又有什么办法呢,感觉还是多总结多思考,不断积累思路,然后形成知识体系,总有一天会blingblingbling的吧~~
相关文章:
【力扣周赛】第360场周赛
【力扣周赛】第360场周赛 8015.距离原点最远的点题目描述解题思路 8022. 找出美丽数组的最小和题目描述解题思路 8015.距离原点最远的点 题目描述 描述:给你一个长度为 n 的字符串 moves ,该字符串仅由字符 ‘L’、‘R’ 和 ‘_’ 组成。字符串表示你在…...
php环境变量的配置步骤
要配置PHP的环境变量,以便在命令行中直接使用php命令,以下是一般的步骤: Windows 操作系统 下载和安装PHP:首先,你需要从PHP官方网站(https://www.php.net/downloads.php)下载适用于你的操作系…...
Kdtree
Kdtree kdtree 就是在 n 维空间对数据点进行二分;具体先确定一个根,然后小于在这个维度上的根的节点在左边,大于的在右边,再进行下一个维度的划分。直到维度结束,再重复,或者直到达到了结束条件࿱…...

算法leetcode|74. 搜索二维矩阵(rust重拳出击)
文章目录 74. 搜索二维矩阵:样例 1:样例 2:提示: 分析:题解:rust:go:c:python:java: 74. 搜索二维矩阵: 给你一个满足下述两条属性的…...
element浅尝辄止7:InfiniteScroll 无限滚动
滚动加载:滚动至底部时,加载更多数据。 1.如何使用? //在要实现滚动加载的列表上上添加v-infinite-scroll,并赋值相应的加载方法, //可实现滚动到底部时自动执行加载方法。<template><ul class"infinit…...
Day05-Vue基础
Day05-Vue基础 一、单向数据流 父子组件通信。会在父组件中定义好数据,将数据传递给子组件,可以使用这个数据 Vue中针对props这个属性提出了一个单向数据流的概念。 Vue针对props做了一些限制,可以接受值,使用这个值,规范中不要去直接修改这个值 目的是为了对数据流进…...

《机器学习在车险定价中的应用》实验报告
目录 一、实验题目 机器学习在车险定价中的应用 二、实验设置 1. 操作系统: 2. IDE: 3. python: 4. 库: 三、实验内容 实验前的猜想: 四、实验结果 1. 数据预处理及数据划分 独热编码处理结果(以…...

14. Docker中实现CI和CD
目录 1、前言 2、什么是CI/CD 3、部署Jenkins 3.1、下载Jenkins 3.2、启动Jenkins 3.3、访问Jenkins页面 4、Jenkins部署一个应用 5、Jenkins实现Docker应用的持续集成和部署 5.1、创建Dockerfile 5.2、集成Jenkins和Docker 6、小结 1、前言 持续集成(CI/CD)是一种…...
【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水
题目内容 喝汽水问题 喝汽水,1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水(编程实现)。 题目分析 数学思路分析 根据给出的问题和引用内容,我们可以得出答案。 首先ÿ…...
P1591 阶乘数码(Java高精度)
题目描述 求 n ! n! n! 中某个数码出现的次数。 输入格式 第一行为 t ( t ≤ 10 ) t(t \leq 10) t(t≤10),表示数据组数。接下来 t t t 行,每行一个正整数 n ( n ≤ 1000 ) n(n \leq 1000) n(n≤1000) 和数码 a a a。 输出格式 对于每组数据&a…...

Mybatis的动态SQL及关键属性和标识的区别(对SQL更灵活的使用)
( 虽然文章中有大多文本内容,想了解更深需要耐心看完,必定大有受益 ) 目录 一、动态SQL ( 1 ) 是什么 ( 2 ) 作用 ( 3 ) 优点 ( 4 ) 特殊标签 ( 5 ) 演示 二、#和$的区别 2.1 #使用 ( 1 ) #占位符语法 ( 2 ) #优点 2.…...

mysql下载
网址 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 2、选择MSI进行安装 3、这里我选择离线安装 4、这里我选择直接下载 5、等待下载安装即可...
聚合函数与窗口函数
聚合函数 回答一 聚合函数(Aggregate Functions)是SQL中的函数,用于对一组数据进行计算,并返回单个结果。聚合函数通常用于统计和汇总数据,包括计算总和、平均值、计数、最大值和最小值等。 以下是一些常见的聚合函…...

c语言实现堆
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、树1、树的概念2、树的相关概念3、树的表示 二、二叉树1、二叉树概念2、特殊的二叉树3、二叉树的性质4、二叉树的顺序结构5、二叉树的链式结构 三、堆(二叉树…...
ubuntu 如何将文件打包成tar.gz
要将文件打包成.tar.gz文件,可以使用以下命令: tar -czvf 文件名.tar.gz 文件路径 其中,-c表示创建新的归档文件,-z表示使用gzip进行压缩,-v表示显示详细的打包过程,-f表示指定归档文件的名称。 例如&am…...
前端优化页面加载速度的方法(持续更新)
提速方法方向 延迟脚本加载 使用 async 属性: 在这种方法中,脚本将在下载完成后立即执行,而不会阻塞其他页面资源的加载和渲染。这适用于那些不依赖于其他脚本和页面内容的脚本,例如分析脚本等。示例如下: html …...

利用SSL证书的SNI特性建立自己的爬虫ip服务器
今天我要和大家分享一个关于自建多域名HTTPS爬虫ip服务器的知识,让你的爬虫ip服务器更加强大!无论是用于数据抓取、反爬虫还是网络调试,自建一个支持多个域名的HTTPS爬虫ip服务器都是非常有价值的。本文将详细介绍如何利用SSL证书的SNI&#…...
HTML和CSS
HTML HTML(Hyper Text Markup Language):超文本语言 超文本:超越了文本的限制,比普通文本更强大。除了文字信息,还可以定义图片、音频、视频等内容。 标记语言:由标签构成的语言 HTML标签都是预定义好的。例如:使用&l…...
C#的IndexOf
在 C# 中,IndexOf 是一个字符串、数组或列表的方法,用于查找指定元素的第一个匹配项的索引。它返回一个整数值,表示匹配项在集合中的位置,如果未找到匹配项,则返回 -1。 IndexOf 方法有多个重载形式,可以根…...

深度学习2.神经网络、机器学习、人工智能
目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...