当前位置: 首页 > news >正文

kafka复习:(17)seekToBeginning的用法

从分区的开始进行消费,因为kafka会定期清理历史数据,所以分区开始的位移不一定为0。seekToBeginning只是从目前保留的数据中最小的offset进行消费

package com.cisdi.dsp.modules.metaAnalysis.rest.kafka2023;import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;import java.time.Duration;
import java.time.temporal.TemporalUnit;
import java.util.*;
import java.util.concurrent.TimeUnit;
/*
从分区开头进行消费; seekToBeginning)*/public class KafkaTest14 {private static Properties getProperties(){Properties properties=new Properties();properties.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"xx.xx.xx.xx:9092");properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"testGroup12");//properties.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false");return properties;}public static void main(String[] args) {KafkaConsumer<String,String> myConsumer=new KafkaConsumer<String, String>(getProperties());myConsumer.subscribe(Arrays.asList("student"));Set<TopicPartition> topicPartitionSet = new HashSet<>();while(topicPartitionSet.size() == 0){ConsumerRecords<String,String> consumerRecords=myConsumer.poll(Duration.ofMillis(5000));topicPartitionSet = myConsumer.assignment();}myConsumer.seekToBeginning(topicPartitionSet);while(true){ConsumerRecords<String, String> consumerRecords = myConsumer.poll(Duration.ofMillis(5000));for(ConsumerRecord record: consumerRecords){System.out.println(record.value());System.out.println(record.offset());}}}
}

相关文章:

kafka复习:(17)seekToBeginning的用法

从分区的开始进行消费&#xff0c;因为kafka会定期清理历史数据&#xff0c;所以分区开始的位移不一定为0。seekToBeginning只是从目前保留的数据中最小的offset进行消费 package com.cisdi.dsp.modules.metaAnalysis.rest.kafka2023;import org.apache.kafka.clients.consume…...

C# textBox1.Text=““与textBox1.Clear()的区别

一、区别 textbox.Text "" 和 textbox.Clear() 都可以用于清空文本框的内容&#xff0c;但它们之间有一些细微的区别。 textbox.Text "": 这种方式会将文本框的 Text 属性直接设置为空字符串。这样会立即清除文本框的内容&#xff0c;并将文本框显示为空…...

CnetSDK .NET OCR SDK Crack

CnetSDK .NET OCR SDK Crack CnetSDK.NET OCR库SDK是一款高度准确的.NET OCR扫描仪软件&#xff0c;用于使用手写、文本和其他符号等图像进行字符识别。它是一款.NET OCR库软件&#xff0c;使用Tesseract OCR引擎技术&#xff0c;可将字符识别准确率提高99%。通过将此.NET OCR扫…...

Python最新面试题汇总及答案

一、基础部分 1、什么是Python&#xff1f;为什么它会如此流行&#xff1f;Python是一种解释的、高级的、通用的编程语言。Python的设计理念是通过使用必要的空格与空行&#xff0c;增强代码的可读性。它之所以受欢迎&#xff0c;就是因为它具有简单易用的语法 2、为什么Pytho…...

设计模式(单例模式,工厂模式),线程池

目录 什么是设计模式? 单例模式 饿汉模式 懒汉模式 工厂模式 线程池 线程池种类 ThreadPoolExcutor的构造方法: 手动实现一个线程池 什么是设计模式? 计算机行业程序员水平层次不齐,为了让所有人都能够写出规范的代码,于是就有了设计模式,针对一些典型的场景,给出一…...

在mybatis中的mapper.xml中如何使用parameterType实现方法单个传参,对象传参,多参数传参.

在MyBatis的mapper.xml文件中&#xff0c;可以使用parameterType属性来指定方法的参数类型。parameterType属性用于指定传递给映射方法的参数类型&#xff0c;这将影响到MyBatis在映射方法执行时如何处理参数。 以下是三种不同情况下如何在mapper.xml中使用parameterType实现方…...

No120.精选前端面试题,享受每天的挑战和学习

文章目录 浏览器强制缓存和协商缓存cookie&#xff0c;localStorage、sessionStoragejs闭包&#xff0c;原型&#xff0c;原型链箭头函数和普通函数的区别promise的状态扭转 浏览器强制缓存和协商缓存 浏览器缓存是浏览器用于提高网页加载速度的一种机制。浏览器缓存分为强制缓…...

c# 访问sqlServer数据库时的连接字符串

//sql server 身份验证的场合&#xff0c; 连接字符串 private string ConnstrSqlServer "server服务器名称;uid登录名称;pwd登录密码;database数据库名称"; //windows 身份验证连接字符串 private string ConnstrWindows "server服务器名称;database数据库…...

排序算法概述

1.排序算法分类 **比较类算法排序&#xff1a;**通过比较来决定元素的时间复杂度的相对次序&#xff0c;由于其时间复杂度不能突破 O ( n l o g n ) O(nlogn) O(nlogn)&#xff0c;因此也称为非线性时间比较类算法 **非比较类算法排序&#xff1a;**不通过比较来决定元素间的…...

ChatGPT在高等教育中的应用利弊探讨

​人工智能在教育领域的应用日益广泛。2022年11月OpenAI开发的聊天机器人ChatGPT在全球范围内流传开来&#xff0c;其中用户数量最多的国家是美国(15.22%)。由于ChatGPT应用广泛&#xff0c;具有类似人类回答问题的能力&#xff0c;它正在成为许多学生和教育工作者的可信赖伙伴…...

Java之API详解之Runtime的详细解析

3.1 概述 Runtime表示Java中运行时对象&#xff0c;可以获取到程序运行时设计到的一些信息 3.2 常见方法 常见方法介绍 我们要学习的Object类中的常见方法如下所示&#xff1a; public static Runtime getRuntime() //当前系统的运行环境对象 public void exit(int statu…...

机器学习之softmax

Softmax是一个常用于多类别分类问题的激活函数和归一化方法。它将一个向量的原始分数&#xff08;也称为 logits&#xff09;转换为概率分布&#xff0c;使得每个类别的概率值在0到1之间&#xff0c;同时确保所有类别的概率之和等于1。Softmax函数的定义如下&#xff1a; 对于…...

npm script命令

1 串行/并行执行命令 //串行 npm-run-all text test npm run text && npm run test //并行改成& npm-run-all --parallel text test npm run text & npm run test2 传递参数 {"lint": "eslint js/*.js","lint:fix"&#xff1a…...

【力扣周赛】第360场周赛

【力扣周赛】第360场周赛 8015.距离原点最远的点题目描述解题思路 8022. 找出美丽数组的最小和题目描述解题思路 8015.距离原点最远的点 题目描述 描述&#xff1a;给你一个长度为 n 的字符串 moves &#xff0c;该字符串仅由字符 ‘L’、‘R’ 和 ‘_’ 组成。字符串表示你在…...

php环境变量的配置步骤

要配置PHP的环境变量&#xff0c;以便在命令行中直接使用php命令&#xff0c;以下是一般的步骤&#xff1a; Windows 操作系统 下载和安装PHP&#xff1a;首先&#xff0c;你需要从PHP官方网站&#xff08;https://www.php.net/downloads.php&#xff09;下载适用于你的操作系…...

Kdtree

Kdtree kdtree 就是在 n 维空间对数据点进行二分&#xff1b;具体先确定一个根&#xff0c;然后小于在这个维度上的根的节点在左边&#xff0c;大于的在右边&#xff0c;再进行下一个维度的划分。直到维度结束&#xff0c;再重复&#xff0c;或者直到达到了结束条件&#xff1…...

算法leetcode|74. 搜索二维矩阵(rust重拳出击)

文章目录 74. 搜索二维矩阵&#xff1a;样例 1&#xff1a;样例 2&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;go&#xff1a;c&#xff1a;python&#xff1a;java&#xff1a; 74. 搜索二维矩阵&#xff1a; 给你一个满足下述两条属性的…...

element浅尝辄止7:InfiniteScroll 无限滚动

滚动加载&#xff1a;滚动至底部时&#xff0c;加载更多数据。 1.如何使用&#xff1f; //在要实现滚动加载的列表上上添加v-infinite-scroll&#xff0c;并赋值相应的加载方法&#xff0c; //可实现滚动到底部时自动执行加载方法。<template><ul class"infinit…...

Day05-Vue基础

Day05-Vue基础 一、单向数据流 父子组件通信。会在父组件中定义好数据,将数据传递给子组件,可以使用这个数据 Vue中针对props这个属性提出了一个单向数据流的概念。 Vue针对props做了一些限制,可以接受值,使用这个值,规范中不要去直接修改这个值 目的是为了对数据流进…...

《机器学习在车险定价中的应用》实验报告

目录 一、实验题目 机器学习在车险定价中的应用 二、实验设置 1. 操作系统&#xff1a; 2. IDE&#xff1a; 3. python&#xff1a; 4. 库&#xff1a; 三、实验内容 实验前的猜想&#xff1a; 四、实验结果 1. 数据预处理及数据划分 独热编码处理结果&#xff08;以…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...